Synthesis of modified nucleotide building blocks containing electrophilic groups in the 2'-position.

Nucleosides Nucleotides Nucleic Acids

Chemistry Department and Belozersky Institute of Physical Chemical Biology, Moscow State University, Russia.

Published: April 2001

Chemical syntheses of 2'-O-(allyloxycarbonyl)methyladenosine, 2'-O-(methoxycarbonyl)methyladenosine and 2'-O-(2,3-dibenzoyloxy)propyluridine 3'-2-cyanoethyl-N,N-diisopropyl phosphoramidite building blocks are described. These monomers were used successfully to incorporate carboxylic acid, 1,2-diol and aldehyde functionalities into synthetic oligonucleotides.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770008045453DOI Listing

Publication Analysis

Top Keywords

building blocks
8
synthesis modified
4
modified nucleotide
4
nucleotide building
4
blocks electrophilic
4
electrophilic groups
4
groups 2'-position
4
2'-position chemical
4
chemical syntheses
4
syntheses 2'-o-allyloxycarbonylmethyladenosine
4

Similar Publications

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Synthetic cells in tissue engineering.

Curr Opin Biotechnol

January 2025

INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom. Electronic address:

Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation.

View Article and Find Full Text PDF

Carboxylic acids and aromatic compounds are essential building blocks and starting materials for the production of a wide range of fine chemicals and materials. Their recovery from kraft black liquor, an industrial effluent from pulp and paper mills, is a promising way to produce alternative bio-based chemicals. Reliable methods are needed to identify and quantify the molecules of interest in complex mixtures such as black liquors.

View Article and Find Full Text PDF

Greenhouse Gas Emissions and Decarbonization Potential of Global Fired Clay Brick Production.

Environ Sci Technol

January 2025

Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!