Pulsed flow modulation for high-speed GC using a pressure-tunable column ensemble.

Anal Chem

Department of Chemistry, University of Michigan, Ann Arbor 48109, USA.

Published: January 2001

A computer-driven pressure controller is used to deliver pressure pulses to the junction point of two series-coupled columns using different stationary-phase chemistries. The column ensemble consists of a trifluoropropylmethyl polysiloxane column followed by a dimethyl polysiloxane column. Each pressure pulse causes a differential change in the carrier gas velocities in the two columns, which lasts for the duration of the pulse. A pressure pulse is used to selectively increase the separation of a component pair that is separated by the first column but coelutes from the series-coupled ensemble. If both components are on the same column when the pulse is applied, a small change in the ensemble separation occurs. If one component of the pair is on the first column and the other component is on the second column, a pressure pulse can result in a much larger change in the ensemble separation for the component pair. A model with a spreadsheet algorithm is used to predict the effects of a pressure pulse on the trajectories of component bands on the column ensemble. The effect of the initiation time of a pressure pulse is investigated for a two-component mixture that coelutes from the column ensemble. For the case where the entire pressure pulse occurs when one of the components is on the first column and the other component is on the second column, the peak separation from the ensemble increases nearly linearly with the product of the pressure pulse amplitude and the pulse duration. Peak shape artifacts are observed if the pressure pulse occurs when a solute band is migrating across the column junction point.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac000665jDOI Listing

Publication Analysis

Top Keywords

pressure pulse
32
column ensemble
16
column
13
component pair
12
pulse
11
pressure
10
ensemble
8
junction point
8
polysiloxane column
8
column pressure
8

Similar Publications

Square and 4-7-8 breathing are popularly promoted by psychotherapists but have little empirical support. We hypothesized that breathing at 6 breaths per minute (bpm) would improve HRV, reduce blood pressure, and improve mood more than either square or 4-7-8 breathing. We also hypothesized square and 4-7-8 breathing would increase end-tidal CO (PETCO).

View Article and Find Full Text PDF

Purpose: To evaluate the effect of osilodrostat and hypercortisolism control on blood pressure (BP) and glycemic control in patients with Cushing's disease.

Methods: Pooled analysis of two Phase III osilodrostat studies (LINC 3 and LINC 4), both comprising a 48-week core phase and an optional open-label extension. Changes from baseline in systolic and diastolic BP (SBP and DBP), fasting plasma glucose (FPG), and glycated hemoglobin (HbA) were evaluated during osilodrostat treatment in patients with/without hypertension or diabetes at baseline.

View Article and Find Full Text PDF

This study investigated the correlation between quantitative echocardiographic characteristics within 3 days of birth and necrotizing enterocolitis (NEC) and its severity in preterm infants. A retrospective study was conducted on 168 preterm infants with a gestational age of < 34 weeks. Patients were categorized into NEC and non-NEC groups.

View Article and Find Full Text PDF

Epidemiological status, development trends, and risk factors of disability-adjusted life years due to diabetic kidney disease: A systematic analysis of Global Burden of Disease Study 2021.

Chin Med J (Engl)

January 2025

Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.

Background: Approximately 40% of individuals with diabetes worldwide are at risk of developing diabetic kidney disease (DKD), which is not only the leading cause of kidney failure, but also significantly increases the risk of cardiovascular disease, causing significant societal health and financial burdens. This study aimed to describe the burden of DKD and explore its cross-country epidemiological status, predict development trends, and assess its risk factors and sociodemographic transitions.

Methods: Based on the Global Burden of Diseases (GBD) Study 2021, data on DKD due to type 1 diabetes (DKD-T1DM) and type 2 diabetes (DKD-T2DM) were analyzed by sex, age, year, and location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!