The small nuclear ribonucleoprotein 70K (snRNP 70K; U1-70 kDa) is an integral part of the spliceosome, a large RNA-protein complex catalyzing the removal of introns from nuclear pre-mRNA. snRNP is one of the best-studied essential subunits of snRNPs, is highly conserved and its inactivation was shown to result in complete inhibition of splicing. Applying subtractive hybridization, we found a sequence with 100% identity to snRNP absent in fetal Down syndrome (DS) brain. This observation made us determine snRNP-mRNA steady-state levels and protein levels in brains of adult patients with DS. snRNP-mRNA and protein levels of five individual brain regions of DS and controls each, were determined by blotting techniques. snRNP-mRNA steady state levels were significantly decreased in DS brain. Performing Western blots with monoclonal and human antibodies, snRNP protein levels were decreased in several regions of DS brain, although one monoclonal antibody did not reveal different snRNP-immunoreactivity. Although decreased snRNP-protein could be explained by decreased mRNA-steady state levels, another underlying mechanism might be suggested: snRNP is one of the death substrates rapidly cleaved during apoptosis by interleukin-1-beta-converting enzyme-like (ICE) proteases, which was well-documented by several groups. As apoptosis is unrequivocally taking place in DS brain leading to permanent cell loses, decreased snRNP-protein levels may therefore reflect decreased synthesis and increased apoptosis-related proteolytic cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1522-2683(200101)22:1<43::AID-ELPS43>3.0.CO;2-V | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!