As part of an ongoing effort to rationally design new copper catalysts for olefin aziridination, a family of copper(II) complexes derived from new tetradentate macrocyclic ligands are synthesized, characterized both in the solid state and in solution, and screened for catalytic nitrene transfer reactivity with a representative set of olefins. The pyridylmethyl-appended diazacycloalkane ligands L6(py)2, L7(py)2, and L8(py)2 are prepared by alkylation of the appropriate diazacycloalkane (piperazine, homopiperazine, or diazacyclooctane) with picolyl chloride in the presence of triethylamine. The ligands are metalated with Cu(ClO4)(2).6H2O to provide the complexes [(L6(py)2)Cu(OClO3)]ClO4 (1), [(L7(py)2)Cu(OClO3)]ClO4 (2), and [(L8(py)2)Cu](ClO4)2 (3), which, after metathesis with NH4PF6 in CH3CN, afford [(L6(py)2)Cu(CH3CN)](PF6)2 (4), [(L7(py)2)Cu(CH3CN)](PF6)2 (5), and [(L8(py)2)Cu](PF6)2 (6). All six complexes are characterized by X-ray crystallography, which reveals that complexes supported by L6(py)2 and L7(py)2 (1, 2, 4, 5) adopt square-pyramidal geometries, while complexes 3 and 6, ligated by L8(py)2 feature tetracoordinate, distorted-square-planar copper ions. Tetragonal geometries in solution and d(x2 - y2), ground states are confirmed for the complexes by a combination of UV-visible and EPR spectroscopies. The divergent flexibility of the three supporting ligands influences the Cu(II)/Cu(I) redox potentials within the family, such that the complexes supported by the larger ligands L7(py)2 and L8(py)2 (5 and 6) exhibit quasi-reversible electron transfer processes (E1/2 approximately -0.2 V vs Ag/AgCl), while the complex supported by L6(py)2 (4), which imposes a rigid tetragonal geometry upon the central copper(II) ion, is irreversibly reduced in CH3CN solution. Complexes 4-6 are efficient catalysts (in 5 mol % amounts) for the aziridination of styrene with the iodinane PhINTs (in 80-90% yields vs PhINTs), while only 4 exhibits significant catalytic nitrene transfer reactivity with 1-hexene and cyclooctene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic000664+ | DOI Listing |
Results Chem
December 2024
Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA.
In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China. Electronic address:
In the endocrine system, anaplastic thyroid cancer (ATC) is extremely aggressive since it inhibits the majority of medications and treatments. Therefore, there is an immediate demand to identify new treatment approaches or drugs to deal with ATC. Recently, amino acid Schiff base copper complexes have received great attention due to their excellent anti-tumor activity.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.
Two novel complexes, [Cu()Cl] and [Zn()Cl], were synthesized from 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine] (), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova.
Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.
View Article and Find Full Text PDFLangmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!