Transforming growth factor-beta (TGF-beta) inhibits growth and induces apoptosis of colon epithelial cells. Binding of TGF-beta to its receptor induces phosphorylation of the Smad proteins Smad2 and Smad3, which then form heteromeric complexes with Smad4, translocate to the nucleus, and activate gene transcription. Smad4 function has been considered an obligate requirement for TGF-beta signaling, and Smad4 mutations present in some cancers have been considered sufficient to inactivate TGF-beta signaling. In this work, we describe studies with a nontransformed human colon epithelial cell line that is mutant for Smad4 but remains growth-inhibited by TGF-beta. The colon cell line VACO-235 has lost one of its Smad4 alleles via a chromosome 18q deletion. The remaining allele bears two missense point mutations located in regions important for Smad4 trimer formation, which is thought necessary for Smad4 function. As expected, pSBE4-BV/Luc, a Smad4-activated transcriptional reporter, was inactive in VACO-235. Nonetheless, VACO-235 demonstrated 80% growth inhibition in response to TGF-beta, as well as retention of some TGF-beta-mediated activation of the p3TP-Lux transcriptional reporter. Transient transfection of the VACO-235 Smad4 mutant allele into a Smad4-null cell line confirmed that this allele is functionally inactive as assayed by both the pSBE4-BV and p3TP-Lux reporters. The simplest explanation of these results is that there is a non-Smad4-dependent pathway for TGF-beta-mediated signaling and growth inhibition in VACO-235 cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

growth inhibition
12
smad4
9
transforming growth
8
smad4 mutant
8
colon epithelial
8
smad4 function
8
tgf-beta signaling
8
transcriptional reporter
8
tgf-beta
6
growth
5

Similar Publications

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alpha.

Blood Adv

January 2025

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!