Ketoprofen (KP), a non-steroidal anti-inflammatory drug of the 2-aryl propionic class, has been shown to produce photoallergic side effects as well as cutaneous photosensitizing properties that induce other phototoxic effects. In the present study we investigated photobinding of ketoprofen to both human serum albumin (HSA), a model protein, and to ex vivo pig skin and its photodegradation. Results demonstrate that photoadduct formation and photodegradation progressively increased with irradiation time where they reach a maximum. Maximum photobinding to the viable layer of the epidermis was about 7-8% of the initial radiolabelled KP added, in the region of 15-30 min UV irradiation. These results were comparable to in vitro results that were seen with photobinding of KP to HSA; in this case, the quantity of covalently bound material was approximately 10% of the initial, after a maximum of 18 min irradiation. It was found by HPLC analysis that the KP decrease is accompanied by an increase of the corresponding photoproduct, decarboxylated ketoprofen (DKP). The yield of DKP reaches a maximum at around 15 min. DKP appears to play an important role in vitro and ex vivo, being the major photoproduct and responsible for the photobinding process. Using micro-autoradiographical techniques we investigated the penetration and distribution of ketoprofen in ex vivo pig skin in greater detail. It was apparent that percutaneous absorption was taking place and that most of the ketoprofen was predominately localised in fibroblasts in the papillary dermis. No other specific localisation within the skin architecture was identified. Although there were differences in the quantities of bound ketoprofen within the different layers of the skin, these levels did not appear to correlate with irradiation time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1011-1344(00)00111-1 | DOI Listing |
Chem Res Toxicol
November 2001
Research Center, University Hospital La Fe, Valencia, Spain.
Drug-induced photoallergy is an immune adverse reaction to the combined effect of drugs and light. From the mechanistic point of view, it first involves covalent binding of drug to protein resulting in the formation of a photoantigen. Hence, determination of the structures of drug-protein photoadducts is of great relevance to understand the molecular basis of photoallergy and cross-immunoreactivity among drugs.
View Article and Find Full Text PDFJ Photochem Photobiol B
October 2000
SEAC Toxicology Unit, Unilever Research, Sharnbrook, Bedford, UK.
Ketoprofen (KP), a non-steroidal anti-inflammatory drug of the 2-aryl propionic class, has been shown to produce photoallergic side effects as well as cutaneous photosensitizing properties that induce other phototoxic effects. In the present study we investigated photobinding of ketoprofen to both human serum albumin (HSA), a model protein, and to ex vivo pig skin and its photodegradation. Results demonstrate that photoadduct formation and photodegradation progressively increased with irradiation time where they reach a maximum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!