Analysis of hypertrophic and normal scar gene expression with cDNA microarrays.

J Burn Care Rehabil

Department of Surgery, VA Puget Sound Health Care System, Harborview Medical Center, Seattle, USA.

Published: March 2001

Hypertrophic scar is one form of abnormal wound healing. Previous studies have suggested that hypertrophic scar formation results from altered gene expression of extracellular matrix molecules. A broadscale evaluation of gene expression in hypertrophic scars has not been reported. To better understand abnormalities in hypertrophic scar gene expression, we compared messenger RNA expression in hypertrophic scars, normal scars, and uninjured skin with the use of complementary (c)DNA microarrays. Total RNA was extracted from freshly excised human hypertrophic scars, normal scars, or uninjured skin and reverse transcribed into cDNA with the incorporation of [33P] deoxycytidine triphosphate. The resulting radioactive cDNA probes were hybridized onto cDNA microarrays of 4000 genes. Hybridization signals were normalized and analyzed. In the comparison of tissue samples, mean intensities were calculated for each gene within each group (hypertrophic scars, normal scars, and uninjured skin). Ratios of the mean intensities of hypertrophic scars to normal scars, hypertrophic scars to uninjured skin, and normal scars to uninjured skin were generated. A ratio that was greater than 1 indicated upregulation of any particular gene and a ratio that was less than 1 indicated downregulation of any particular gene. Our data indicated that 142 genes were overexpressed and 50 genes were underexpressed in normal scars compared with uninjured skin, 107 genes were overexpressed and 71 were underexpressed in hypertrophic scars compared with uninjured skin, and 44 genes were overexpressed and 124 were underexpressed in hypertrophic scars compared with normal scars. Our analysis of collagen, growth factor, and metalloproteinase gene expression confirmed that our molecular data were consistent with published biochemical and clinical observations of normal scars and hypertrophic scars. cDNA microarray analysis provides a powerful tool for the investigation of differential gene expression in hypertrophic scar samples and either uninjured skin or normal scars. Our data validate the use of this technology for future studies on gene expression during repair processes of normal and abnormal wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004630-200021060-00012DOI Listing

Publication Analysis

Top Keywords

hypertrophic scars
36
normal scars
36
uninjured skin
32
gene expression
28
scars uninjured
20
scars
18
hypertrophic scar
16
scars normal
16
hypertrophic
13
cdna microarrays
12

Similar Publications

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.

View Article and Find Full Text PDF

This study investigated the knowledge, attitude, and practice (KAP) of aesthetic medicine practitioners concerning laser and/or light therapy for hypertrophic scars. Conducted at Hebei Medical University Third Hospital from December 25, 2023, to January 7, 2024, the cross-sectional study utilized a self-administered questionnaire to gather socio-demographic data and KAP scores. A total of 424 valid questionnaires were collected, with 220 (52.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Urethral strictures and bladder neck contractures (BNCs) can be significantly morbid for patients and may require intervention for effective urinary drainage. We hypothesized patients with abnormal scarring disorders, such as keloids or hypertrophic scars, are at elevated risks of urethroplasty failure as well as postprocedural urethral strictures and BNCs. We queried the TriNetX database to determine the risk of urethroplasty failure for patients with abnormal scarring disorders compared to controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!