The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical.

Basic Res Cardiol

The Hatter Institute for Cardiovascular Studies, Division of Cardiology, University College London Hospitals & Medical School, UK.

Published: December 2000

There is debate concerning the involvement of p38 mitogen activated protein kinase (MAPK) in the mediation of ischaemic preconditioning. Pharmacological inhibition of p38 MAPK with SB203580 has been reported to block preconditioning in some studies but not in others. We hypothesised that this divergence could be due to differences in the timing of inhibitor administration. Isolated rat hearts were perfused in the Langendorff mode and subjected to 35 min regional ischaemia followed by 120 min reperfusion. Hearts were then double stained with Evans' blue and triphenyltetrazolium chloride to determine risk (R) and infarct zones (I), expressed as I/R% ratios. Preconditioned hearts were subjected to 2 times 5 min global ischaemia with 10 min intervening reperfusion. SB203580 10 microM was perfused either during the preconditioning protocol (PC+/-SB-early),just prior to and during the first 15 min of the lethal ischaemia (PC+/-SB-late) or prior to regional ischaemia in the absence of preconditioning. Ischaemic preconditioning significantly limited infarct size (I/R 38.9 +/- 3.0% in control vs 13.4 +/- 2.4%, P < 0.01). In the PC+/-SB-early group, preconditioning was still fully protective (I/R% 14.6 +/- 1.0). However, in the PC+/-SB-late group, SB203580 completely blocked the protection afforded by preconditioning (I/R% 33.6 +/- 4.4%, P < 0.01 vs 13.4 +/- 2.4% in preconditioned hearts, p < 0.05). SB203580 alone did not affect infarct size when given prior to and during regional ischaemia (I/R 36.2 +/- 2.7%). These histological data are corroborated by a significant increase in p38 MAPK activation in the preconditioned hearts during sustained ischaemia in comparison with the controls. In conclusion the activation of p38 MAPK during lethal ischaemia, but not during the ischaemic preconditioning protocol, is essential for the mediation of protection and may resolve some of the earlier controversy surrounding the use of SB203580 in preconditioning studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s003950070023DOI Listing

Publication Analysis

Top Keywords

p38 mapk
16
ischaemic preconditioning
16
regional ischaemia
12
preconditioned hearts
12
preconditioning
10
preconditioning studies
8
preconditioning protocol
8
lethal ischaemia
8
prior regional
8
infarct size
8

Similar Publications

Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Mycoplasma pneumoniae MPN606 induces inflammation by activating MAPK and NF-κB signaling pathways.

Microb Pathog

January 2025

Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China. Electronic address:

Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation.

View Article and Find Full Text PDF

Microbiota-derived proteins synergize with IL-23 to drive IL22 production in model type 3 innate lymphoid cells.

PLoS One

January 2025

Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.

Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.

View Article and Find Full Text PDF

4-O-Methylglucuronoxylan from Hygrophila Ringens var. Ringens Seeds: Chemical Composition and Anti-Inflammatory Activity.

Macromol Biosci

January 2025

Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743, Jena, Germany.

Hygrophila ringens var. ringens is a medicinal plant of the Acanthaceae family. A soluble polysaccharide is extracted from H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!