Separation of amino acids by ion mobility spectrometry.

J Chromatogr A

Department of Chemistry, Washington State University, Pullman 99164-4630, USA.

Published: December 2000

The mobilities of the 20 common amino acids were determined by electrospray ionization ion mobility spectrometry. It was found that each amino acid had a different drift time and hence a different reduced mobility constant K0. This difference in drift time was less than 0.1 ms in many cases. With the instrument used in this study it would not be possible to resolve mixtures of some of the amino acids. It would however be possible to determine any single amino acid. In addition, the detection limits were determined for the 20 amino acids. They ranged from 50 to 700 pg. This indicates that the detection limits were less than 3 pmol for all of the amino acids and that many amino acids had detection limits less than 1 pmol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(00)00799-8DOI Listing

Publication Analysis

Top Keywords

amino acids
24
detection limits
12
ion mobility
8
mobility spectrometry
8
amino acid
8
drift time
8
limits pmol
8
amino
7
acids
6
separation amino
4

Similar Publications

Background: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).

View Article and Find Full Text PDF

Background: Non-human primates (NHP) serve as an important bridge for testing therapeutic agents that have been previously shown to be effective in transgenic mouse models. Our earlier published data using an NHP model of sporadic AD-related pathology that develops abundant cerebral amyloid angiopathy (CAA), squirrel monkeys (SQMs), indicates that chronic treatment with TLR9 agonist, class B CpG ODN, safely ameliorates CAA while promoting cognitive benefits. In the present study, we intended to delineate alterations in brain metabolome induced by chronic CpG ODN administration in order to provide further insight into CpG ODN immunomodulatory capabilities.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Synthetic Strategies and Biological Activities of Teixobactin and its Analogs: A Review.

Curr Top Med Chem

January 2025

Department of Chemistry, REVA University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore-560064, Karnataka, India.

Antibiotics are a revolutionary discovery in modern medicine, enabling the successful treatment of bacterial infections that were once untreatable and deadly. Teixobactin, a "head-toside- chain" cyclodepsipeptide, shows great promise as a lead compound for developing new antibiotics to deal with multi-drug-resistant bacterial infections. The unique pharmacological profile and intriguing structural characteristics of teixobactin, including its unusual amino acid residues (three D-amino acids and L-allo-enduracididine), have drawn the attention of multiple research groups seeking to create new antibiotics with innovative mechanisms.

View Article and Find Full Text PDF

Evaluation of a point-of-care test for quantitative determination of total thyroxine in feline serum.

J Feline Med Surg

January 2025

Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi (LO), Italy.

Objectives: Total thyroxine (TT4) evaluation is the most commonly used first-line test for the diagnosis and monitoring of cats with hyperthyroidism. Vcheck T4 is a point-of-care immunoassay that measures TT4 using a Vcheck V200 analyser. This study aimed to evaluate the analytic performance of the Vcheck T4 assay in feline sera and the agreement in the classification of normal, high and low TT4 concentrations of Vcheck T4 with those measured by an enzyme immunoassay (EIA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!