Vitamin E reacts with radicals such as lipid peroxyl radical (LOO*) and singlet oxygen ((1)O2), and plays a role in inhibiting lipid peroxidation in cell membranes and preventing the oxidation of low-density lipoproteins (LDL). However, only a few studies have investigated the effect of vitamin E on the degradation of hydrogen peroxide (H2O2). Therefore, we examined the effect of vitamin E on glutathione redox cycle-dependent H2O2 degradation activity in human umbilical vein endothelial cells (HUVEC). Confluent HUVEC were cultured for seven days in media containing various concentrations of vitamin E (alpha-tocopherol). The level of glutathione redox cycle-dependent H2O2 degradation activity and the intracellular glutathione level were determined. HUVEC that had been cultured in the presence of higher concentrations of vitamin E had a higher level of H2O2 degradation activity and a higher intracellular content of the reduced form of glutathione (GSH). Therefore, it is suggested that the vitamin E-induced increase in H2O2 degradation activity in HUVEC results from an increase in intracellular GSH level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0024-3205(00)00933-4 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.
Introduction: Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (HO) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety.
Methods: We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes.
BMC Plant Biol
January 2025
Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
This study investigates the synergistic effects of zinc oxide nanoparticles (ZnO NPs) and melatonin (MT) on Fragaria × ananassa (strawberry) plants under drought stress, focusing on growth, fruit biomass, and stress tolerance. ZnO NPs enhance nutrient uptake and stress resistance, while MT regulates growth hormones and boosts photosynthetic efficiency. Seven treatments were evaluated: T1 (no stress, 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!