Multidrug resistance in Saccharomyces cerevisiae mainly results from the overexpression of genes coding for the membrane efflux pumps, the major facilitators and the ABC binding cassette transporters, under the control of key transcription regulators encoded by the PDR1 and PDR3 genes. Pdr3p transcriptional activator contains a weak activation domain near the N-terminal zinc finger, a central regulatory domain, and a strong activation domain near the carboxyl terminus. Here we report the results of the mutational analysis of the C-terminal region of Pdr3p. After in vitro mutagenesis of the PDR3 gene six single amino acid substitutions were identified and resulted in resistance to cycloheximide, sulfomethuron methyl, 4-nitroquinoline oxide, fluconazole, mucidin, chloramphenicol and oligomycin. All the C-terminal pdr3 mutant alleles also conferred multidrug resistance in the presence of the wild-type PDR3 gene. The pdr3 mutations resulted in overexpression of both the PDR3 and PDR5 genes as revealed by transactivation experiments involving the PDR3-lacZ and PDR5-lacZ fusion genes and Western blot analyses using antibodies against Pdr5p. Most of the C-terminal pdr3 mutations were found in two sequence stretches exhibiting a high degree of amino acid identity with Pdr1p indicating that they might play a significant role in protein-protein interactions during the initiation of transcription of genes involved in multidrug resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002940000164 | DOI Listing |
Open Forum Infect Dis
January 2025
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Background: Antimicrobial resistance is a global public health emergency. Patients undergoing hematopoietic stem cell transplantation (HCT) are at increased risk for severe infections with multidrug-resistant (MDR) organisms, although more data are needed on the relative burden of MDR Enterobacterales (MDR-E) in immunocompromised populations. In this study, we compare the prevalence of Enterobacterales resistance in cultures from patients undergoing HCT with that of non-HCT patients seeking care at a large healthcare system in North Carolina, USA.
View Article and Find Full Text PDFFront Antibiot
April 2023
Saint Peter's Specialized Tuberculosis Referral Hospital, Addis Ababa, Addis Ababa Administrative Region, Ethiopia.
Background: In developing countries, the co-existence of a high burden of infectious diseases caused by Gram-negative bacteria and the rapid increase and spread of multidrug-resistant bacteria have become a serious health threat.
Objective: Profiling of Gram-negative bacteria and determining the magnitude of their antimicrobial resistance among patients.
Results: A total of 175 non-spore-forming Gram-negative bacteria were isolated from 873 different clinical samples.
Front Antibiot
December 2023
Department of Clinical Microbiology and Immunology, School of Medical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana.
Introduction: Antimicrobial resistance (AMR) remains a significant health challenge globally and nations have the responsibility to maintain a constant surveillance of AMR, particularly for the emergence of multidrug-resistant (MDR) isolates to existing antibiotics. Against this backdrop, we applied the WHO's AWaRe (ACCESS, WATCH, and RESERVE) antibiotics classification and the European Centre for Disease Prevention and Control (ECDC)'s multidrug resistance definition for AMR isolates from clinical specimens.
Method: This study reviewed bacterial culture and antibiotic sensitivity test outcomes.
Front Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!