Chromatophores as tools for the study of organelle transport.

Methods Mol Biol

Department of Biology, Pomona College, Claremont, CA, USA.

Published: April 2001

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-051-9:201DOI Listing

Publication Analysis

Top Keywords

chromatophores tools
4
tools study
4
study organelle
4
organelle transport
4
chromatophores
1
study
1
organelle
1
transport
1

Similar Publications

Dynamic skin behaviors in cephalopods.

Curr Opin Neurobiol

June 2024

The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA. Electronic address:

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain.

View Article and Find Full Text PDF

Neural control of cephalopod camouflage.

Curr Biol

October 2023

The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA. Electronic address:

In Die Another Day, James Bond receives an Aston Martin that can render itself invisible by dynamically reproducing the surroundings on the car's "polymer skin". In what is widely regarded as the worst Bond movie ever, the invisible car scene is cited as the moment the plot plunges into the truly absurd. But what if nature had actually invented such a technology, and did so hundreds of millions of years ago? The coleoid cephalopods - octopus, cuttlefish and squid - are living examples of dynamic camouflage.

View Article and Find Full Text PDF

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function.

View Article and Find Full Text PDF

Cephalopod mollusks are endowed with an impressive range of features that have captured the attention of scientists from different fields, the imaginations of artists, and the interests of the public. The ability to spontaneously regrow lost or damaged structures quickly and functionally is among one of the most notable peculiarities that cephalopods possess. Microscopical imaging techniques represent useful tools for investigating the regenerative processes in several species, from invertebrates to mammals.

View Article and Find Full Text PDF

Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL.

Methods Enzymol

June 2021

Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States. Electronic address:

Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!