Copper-dioxygen interactions are of interest due to their importance in biological systems as reversible O2- carriers, oxygenases, or oxidases and also because of their role in industrial and laboratory oxidation processes. Here we report on the kinetics (stopped-flow, -90 to 10 degrees C) of O2-binding to a series of dicopper(I) complexes, [Cu2(Nn)(MeCN)2]2+ (1Nn) (-(CH2)n- (n = 3-5) linked bis[(2-(2-pyridyl)ethyl]amine, PY2) and their close mononuclear analogue, [(MePY2)Cu(MeCN)]+ (3), which form mu-eta 2:eta 2-peroxodicopper(II) complexes [Cu2(Nn)-(O2)]2+ (2Nn) and [(MePY2)Cu]2(O2)]2+ (4), respectively. The overall kinetic mechanism involves initial reversible (k+,open/k-,open) formation of a nondetectable intermediate O2-adduct [Cu2(Nn)(O2)]2+ (open), suggested to be a CuI...CuII-O2- species, followed by its reversible closure (k+,closed/k-,closed) to form 2Nn. At higher temperatures (253 to 283 K), the first equilibrium lies far to the left and the observed rate law involves a simple reversible binding equilibrium process (kon,high = (k+,open/k-,open)(k+,closed)). From 213 to 233 K, the slow step in the oxygenation is the first reaction (kon,low = k+,open), and first-order behavior (in 1Nn and O2) is observed. For either temperature regime, the delta H++ for formation of 2Nn are low (delta H++ = -11 to 10 kJ/mol; kon,low = 1.1 x 10(3) to 4.1 x 10(3) M-1 s-1, kon,high = 2.2 x 10(3) to 2.8 x 10(4) M-1 s-1), reflecting the likely occurrence of preequilibria. The delta H degree ranges between -81 and -84 kJ mol-1 for the formation of 2Nn, and the corresponding equilibrium constant (K1) increases (3 x 10(8) to 5 x 10(10) M-1; 183 K) going from n = 3 to 5. Below 213 K, the half-life for formation of 2Nn increases with, rather than being independent of, the concentration of 1Nn, probably due to the oligomerization of 1Nn at these temperatures. The O2 reaction chemistry of 3 in CH2Cl2 is complicated, including the presence of induction periods, and could not be fully analyzed. However, qualitative comparisons show the expected slower intermolecular reaction of 3 with O2 compared to the intramolecular first-order reactions of 1Nn. Due to the likelihood of the partial dimerization of 3 in solution, the t1/2 for the formation of 4 remains constant with increasing complex concentration rather than decreasing. Acetonitrile significantly influences the kinetics of the O2 reactions with 1Nn and 3. For 1N4, the presence of MeCN inhibits the formation of a previously (Jung et al, J. Am. Chem. Soc. 1996, 118, 3763-3764) observed intermediate. Small amounts of added MeCN considerably slow the oxygenation rates of 3, inhibit its full formation to 4, and increase the length of the induction period. The results for 1Nn and their mononuclear analogue 3 are presented, and they are compared with each other as well as with other dinucleating dicopper(I) systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0007916 | DOI Listing |
Water Res
November 2024
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China. Electronic address:
Extracting uranium (U(VI)) from fluoride-rich radioactive wastewater is of great significance for the development of nuclear energy and environmental remediation. The presence of thermodynamically stable [UOF] (n = 0, 1, 2, 3, 4) aqueous complexes in fluoride-rich U(VI)-containing wastewater significantly hinders the efficiency of uranyl extraction and recovery using conventional methods. In this study, we report a direct precipitation method using deferiprone ligands for efficient uranyl extraction from fluoride-rich wastewater that offsets the preparation of solid materials.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada.
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected Pt complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for Pt centers supported by popular κ-(,) ligands. While one product features an isomerized Pt center stabilized by the κ-(,,) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at Pt.
View Article and Find Full Text PDFLangmuir
November 2024
Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235.
Dimethyldichlorosilane (DMDCS), an efficient silane coupling reagent appearing between the -OH groups of silica gel (SG) and picric acid, instantaneously produces a derivative enriched with nitro groups. The nitro group acting as an end-cap terminates the reaction and subsequently was converted into diazo to couple tyrosine's phenol ring via its -carbon, the inert center to immobilize horseradish peroxidase (HRP) in a multipoint mode. It maintains the status quo of the native enzyme's protein folding and the entire protein groups' chemistry.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague 6, Prague, 162 06, Czech Republic.
Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup.
View Article and Find Full Text PDFInorg Chem
November 2024
Institute for Materials Chemistry and Engineering and IRCCS, KyushuUniversity, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
DFT calculations were performed to explore the mechanism underlying the reduction of NO to NO by a Cu complex. A nitrosyl complex reacts with another NO molecule and the Cu complex, leading to the formation of a dicopper-hyponitrite complex (CuNO). The first steps follow a common pathway until the formation of the intermediate [Cu-NO], after which the reaction pathway diverges into three CuNO species: κ-N,N', κ-O,O', and κ-N,O,O'.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!