AI Article Synopsis

  • X-ray diffraction and infrared absorption spectra reveal that the spicules of the tropical ascidian Herdmania momus are made of vaterite, marking the first known marine organisms to naturally form this mineral.
  • The presence of vaterite in these ascidians may provide insights into evolutionary connections between urochordates and vertebrates.
  • Additionally, the stability of vaterite in seawater for up to one year suggests it could be preserved in marine sediments over time.

Article Abstract

X-ray diffraction and infrared absorption spectra show that the spicules of the common tropical ascidian, Herdmania momus, are mineralized with vaterite. These are the first strictly marine organisms known to normally precipitate vaterite. The biomineralization of vaterite may constitute another link between the urochordates and vertebrates. The vaterite of ascidian spicules immersed in natural seawater remains mineralogically unchanged for 1 year, which indicates that vaterite may be preserved transiently in marine sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1118730DOI Listing

Publication Analysis

Top Keywords

vaterite
6
vaterite mineralization
4
mineralization product
4
product hard
4
hard tissues
4
tissues marine
4
marine organism
4
organism ascidiacea
4
ascidiacea x-ray
4
x-ray diffraction
4

Similar Publications

Background: Kidney stone disease is a common surgical disease and significant public health issue, may be influenced by environmental factors such as domestic water hardness and its related minerals. Previous studies have shown inconsistent and controversial results regarding the impact of domestic water hardness on kidney stone formation.

Methods: This prospective cohort study analyzed data from 288,041 participants in the UK Biobank with no prior history of kidney stones from 2006-2024.

View Article and Find Full Text PDF

Background: The serum calcification propensity test (or T50 test) might become a standard tool for the assessment of vascular calcification risk and T50 might be a valuable biomarker in clinical trials of treatments intended to slow the progression of vascular calcification. Literature data suggest that non-calcium-containing phosphate binders can influence T50 in chronic dialysed patients. However, it is not clear whether similar interventions are effective in patients at earlier stages of chronic kidney disease (CKD).

View Article and Find Full Text PDF

Sulfate Promotes Compact CaCO Formation and Protects Portland Cement from Supercritical CO Attack.

Environ Sci Technol

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Supercritical (sc) CO in geologic carbon sequestration (GCS) can chemically and mechanically deteriorate wellbore cement, raising concerns for long-term operations. In contrast to the conventional view of "sulfate attack" on cement, we found that adding 0.15 M sulfate to the acidic brine can significantly reduce the impact of scCO attack on Portland cement, resulting in stronger cement than that found in a sulfate-free system.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Cuttlebone (CB), also known as SEPIAE ENDOCONCHA, is the inner shell of cuttlefish and has been employed in traditional medicine in numerous countries since antiquity. Despite its significant medicinal value, CB is often underestimated and discarded on the beach as debris in some countries, which considerably impacts the environment and economy.

The Aim Of The Review: This study aims to elucidate the value of CB, particularly in the context of its medicinal properties, to promote its rational utilization.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!