Download full-text PDF |
Source |
---|
Bone Marrow Transplant
January 2025
Instituto de Pesquisa Pelé Pequeno Príncipe/Faculdades Pequeno Príncipe, Curitiba, Brazil.
Hematopoietic stem cell transplantation (HSCT) is an established treatment for selected patients with inborn errors of metabolism. In this first report from the PDWP-SBTMO, we included 105 patients transplanted between 1988 and 2021 across six Brazilian HSCT centers. The most prevalent diseases were X-linked adrenoleukodystrophy (n = 61) and mucopolysaccharidosis (type I n = 20; type II n = 10), with a median age at HSCT of 8.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
Background: The use of exome sequencing (ES) has helped in detecting many variants and genes that cause primary adrenal insufficiency (PAI). The diagnosis of PAI is difficult and can be life-threatening if not treated urgently. Consanguinity can impact the detection of recessively inherited genes.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC).
View Article and Find Full Text PDFMol Neurodegener
November 2024
Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
Disturbances in the fatty acid lipidome are increasingly recognized as key drivers in the progression of various brain disorders. In this review article, we delve into the impact of Δ9 fatty acid desaturases, with a particular focus on stearoyl-CoA desaturase-1 (SCD1), within the setting of neuroinflammation, neurodegeneration, and brain repair. Over the past years, it was established that inhibition or deficiency of SCD1 not only suppresses neuroinflammation but also protects against neurodegeneration in conditions such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease.
View Article and Find Full Text PDFRadiol Case Rep
January 2025
Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!