P450 enzyme expression patterns in the NCI human tumor cell line panel.

Drug Metab Dispos

Division of Cell and Molecular Biology, Boston University, 5 Cummington St., Boston, Massachusetts, USA.

Published: March 2001

Cytochrome P450 (P450) enzyme expression patterns were determined for a panel of 60 human tumor cell lines, representing nine tumor tissue types, used by the National Cancer Institute (NCI) Anticancer Drug Screening Program. All 60 tumor cell lines displayed significant P450 activity, as well as P450 reductase activity, as determined using the general P450 substrate 7-benzyloxyresorufin. Cell line-specific P450 enzyme patterns were observed using three other P450 substrates, 7-ethoxycoumarin, coumarin, and 7-ethoxyresorufin, each of which was metabolized at a low rate. Using a pattern-matching computer program, COMPARE, correlative relationships were investigated between the arrays of P450 activities and the patterns of cytotoxicity exhibited by a large group of anticancer agents of proven or potential clinical utility. Significant negative correlations between the patterns of P450-dependent 7-benzyloxyresorufin metabolism activity and cell line chemosensitivity were observed for 10 standard anticancer agents (including 6 alkylating agents) and 55 investigational compounds, suggesting a role for P450 metabolism in the inactivation of these agents. Negative correlations between 7-ethoxycoumarin O-deethylation and cell line chemosensitivity to a group of topoisomerase inhibitors were also seen, again suggesting P450-dependent drug inactivation. P450 enzyme profiling may thus aid in interpreting the patterns of drug sensitivity and resistance in the NCI tumor cell panel, and may facilitate the identification of anticancer agents whose activity can be altered via cytochrome P450 metabolism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

p450 enzyme
16
tumor cell
16
p450
12
anticancer agents
12
enzyme expression
8
expression patterns
8
human tumor
8
cell panel
8
cytochrome p450
8
cell lines
8

Similar Publications

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Pylb-based overexpression of cytochrome P450 in Bacillus subtilis 168.

Enzyme Microb Technol

January 2025

Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Inducer-free expression systems are promising tools for biorefinery because they can reduce the reliance on inducers, reducing production costs and simplifying processes. Owing to their broad range of substrate structures and catalytic reactions, cytochrome P450s are promising biocatalysts to produce value-added compounds. However, unsuitable levels of cytochrome P450 expression could result in cell stress, affecting the efficiency of the biocatalyst.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Potential Interaction of Pinocembrin with Drug Transporters and Hepatic Drug-Metabolizing Enzymes.

Pharmaceuticals (Basel)

January 2025

Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.

: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!