Xnkx-2.1: a homeobox gene expressed during early forebrain, lung and thyroid development in Xenopus laevis.

Dev Genes Evol

Georg-August-Universität Göttingen, Institute of Biochemistry and Molecular Cell Biology, Humboldtallee 23, 37073 Göttingen, Germany.

Published: November 2000

Nkx-2.1 is a member of the vertebrate Nkx family of homeobox genes; it was originally identified as a tissue-specific regulator of thyroglobulin and thyroperoxidase gene transcription. Here we report on the embryonic expression of Xnkx-2.1, which is expressed in the presumptive forebrain from early neurulation onwards. In tadpole stage embryos Xnkx-2.1 transcripts are primarily detected in ventral forebrain, lung buds and thyroid anlage. Therefore, Xnkx-2.1 may be part of the genetic network that controls the early development of these organs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004270000098DOI Listing

Publication Analysis

Top Keywords

forebrain lung
8
xnkx-21
4
xnkx-21 homeobox
4
homeobox gene
4
gene expressed
4
expressed early
4
early forebrain
4
lung thyroid
4
thyroid development
4
development xenopus
4

Similar Publications

Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.

View Article and Find Full Text PDF

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.

View Article and Find Full Text PDF

Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear.

View Article and Find Full Text PDF

The organum vasculosum of the lamina terminalis (OVLT) is a forebrain circumventricular organ that modulates central autonomic control of arterial pressure and body fluid homeostasis. It has been implicated in the pathogenesis of rat models of hypertension that are driven by increased salt intake since OVLT lesion (OVLTx) attenuates both the DOCA-salt and angiotensin II-salt models. However, its contribution to the development of hypertension that is not salt-dependent, such as the 2 kidney, 1 clip (2K1C) renovascular model, is not clear.

View Article and Find Full Text PDF

Examining the NEUROG2 lineage and associated gene expression in human cortical organoids.

Development

January 2025

Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada.

Proneural genes are conserved drivers of neurogenesis across the animal kingdom. How their functions have adapted to guide human-specific neurodevelopmental features is poorly understood. Here, we mined transcriptomic data from human fetal cortices and generated from human embryonic stem cell-derived cortical organoids (COs) to show that NEUROG1 and NEUROG2 are most highly expressed in basal neural progenitor cells, with pseudotime trajectory analyses indicating that NEUROG1-derived lineages predominate early and NEUROG2 lineages later.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!