Our previous work showed that stereotaxic microextrusion of columns of purified peripheral nerve-derived Schwann cells into the thalamus of syngeneic adult rats induces host axons to grow into the column and form a new fiber tract. Here we describe the time course of cellular events that lead to the formation of this new tract. At 2 h postoperation, numerous OX42-positive microglia accumulated at the graft-host interface, after which donor columns became progressively and heavily infiltrated by microglia/macrophages that took on an elongated morphology in parallel with the highly orientated processes of the donor Schwann cells. The penetration of host astrocytic processes into the Schwann cell columns was substantially slower in onset, being first detected at 4 days postoperation. This event was contemporaneous with the in-growth of host thalamic axons. Between 7 and 14 days postoperation, GFAP-positive astrocytes became fully incorporated into the transplants, where they too adopted an elongated form, orientated in parallel with the longitudinal axis of the graft. Thus, the columns became a mosaic of elongated and highly orientated donor Schwann cells intimately mingled with host microglia, astrocytes, and numerous, largely unbranched 200-kDa neurofilament-positive axons from the adjacent thalamus. Electron microscopy demonstrated that the processes of donor Schwann cells and host astrocytes within the column formed tightly packed bundles that were surrounded by a partial or complete basal lamina. Control columns, formed by extruding freeze-thaw-killed Schwann cells or purified peripheral nerve fibroblasts induced a reactive injury response by the adjacent host microglia and astrocytes, but neither host astrocytes nor neurofilament-positive axons were incorporated into the columns. A better understanding of the mechanisms that regulate the interactions between donor and host glia should facilitate improved integration of such grafts and enhance their potential for inducing tissue repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1098-1136(200102)33:2<118::aid-glia1011>3.0.co;2-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!