Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several gradient-echo fMRI blood oxygenation level-dependent (BOLD) effects are described in the literature: extravascular spin dephasing around capillaries and veins, intravascular phase changes, and transverse relaxation changes of blood. This work considers a series of tissue compartmentalized models incorporating each of these effects, and tries to determine the model which is most consistent with the data. To isolate the different tissue contributions, a series of multi-echo inversion recovery (IR) fMRI scans were performed. Visual stimulation experiments were performed at 1.5 T, one interleaved six-echo and two IR six-echo EPI scans (the latter to suppress gray matter (GM) and cerebrospinal fluid (CSF)). The tissue and vascular composition of activated areas was analyzed using independent spin-echo IR MRI experiments and MR venography, respectively. This information was used to fit the multi-echo fMRI data to the BOLD models. The activated areas almost always included a venous vessel visible on the venogram and consisted of GM and CSF. The fMRI signal changes were best described by extravascular dephasing effects in both GM and CSF around a venous vessel, in combination with intravascular effects. The role of spin dephasing around capillaries in GM appears to be insignificant. Magn Reson Med 45:233-246, 2001.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1522-2594(200102)45:2<233::aid-mrm1032>3.0.co;2-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!