A homologue of the Escherichia coli GroEL apical domain was obtained from thermophilic eubacterium Thermus thermophilus. The domains share 70 % sequence identity (101 out of 145 residues). The thermal stability of the T. thermophilus apical domain (Tm>100 degrees C as evaluated by circular dichroism) is at least 35 degrees C greater than that of the E. coli apical domain (Tm=65 degrees C). The crystal structure of a selenomethione-substituted apical domain from T. thermophilus was determined to a resolution of 1.78 A using multiwavelength-anomalous-diffraction phasing. The structure is similar to that of the E. coli apical domain (root-mean-square deviation 0.45 A based on main-chain atoms). The thermophilic structure contains seven additional salt bridges of which four contain charge-stabilized hydrogen bonds. Only one of the additional salt bridges would face the "Anfinsen cage" in GroEL. High temperatures were exploited to map sites of interactions between the apical domain and molten globules. NMR footprints of apical domain-protein complexes were obtained at elevated temperature using 15N-1H correlation spectra of 15N-labeled apical domain. Footprints employing two polypeptides unrelated in sequence or structure (an insulin monomer and the SRY high-mobility-group box, each partially unfolded at 50 degrees C) are essentially the same and consistent with the peptide-binding surface previously defined in E. coli GroEL and its apical domain-peptide complexes. An additional part of this surface comprising a short N-terminal alpha-helix is observed. The extended footprint rationalizes mutagenesis studies of intact GroEL in which point mutations affecting substrate binding were found outside the "classical" peptide-binding site. Our results demonstrate structural conservation of the apical domain among GroEL homologues and conservation of an extended non-polar surface recognizing diverse polypeptides.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.4405DOI Listing

Publication Analysis

Top Keywords

apical domain
36
groel apical
12
apical
11
domain
9
coli groel
8
coli apical
8
additional salt
8
salt bridges
8
groel
6
thermophilic mini-chaperonin
4

Similar Publications

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!