New relationship between electrical characteristics of evoked contractions in skeletal muscles during necrobiosis.

Bull Exp Biol Med

Department of General Pathology, I. M. Sechenov Moscow Medical Academy.

Published: October 2000

Evoked muscle contractions at different stages of necrobiosis were investigated by stimulating impedance myography in patients with vascular pathology and acute or chronic ischemic syndrome of the lower extremities. The threshold and maximum amplitudes and current strength for contraction responses were determined, and the dependence of evoked contractions on stimulating current was evaluated. Approximation of the obtained curves with the well-known force-time excitation curves demonstrated the relationship between excitability and contractility parameters depending on the stage of ischemic necrobiosis. This regularity is a more universal interrelation between muscle electrical characteristics. Electrical characteristics of evoked contractions depend on various factors influencing muscle structure and function.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrical characteristics
12
evoked contractions
12
characteristics evoked
8
relationship electrical
4
evoked
4
contractions
4
contractions skeletal
4
skeletal muscles
4
muscles necrobiosis
4
necrobiosis evoked
4

Similar Publications

The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.

View Article and Find Full Text PDF

Glycan Sequencing Based on Glycosidase-Assisted Nanopore Sensing.

J Am Chem Soc

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Nanopores are promising sensors for glycan analysis with the accurate identification of complex glycans laying the foundation for nanopore-based sequencing. However, their applicability toward continuous glycan sequencing has not yet been demonstrated. Here, we present a proof-of-concept of glycan sequencing by combining nanopore technology with glycosidase-hydrolyzing reactions.

View Article and Find Full Text PDF

Lead-free inorganic halide perovskites, specifically BaPX (X = Cl, F, I, Br) have gained attention in green photovoltaics due to their remarkable mechanical, optical, structural, and electronic properties. Using first-principles calculations, we investigated the mechanical, electronic, and optical characteristics of BaPX, revealing direct band gaps at the -symmetry point, assessed with the PBE and HSE functionals. The charge distribution analysis shows strong ionic bonding between Ba and halides and covalent bonding between P and halides.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

In 2019, COVID-19 began one of the greatest public health challenges in history, reaching pandemic status the following year. Systems capable of predicting individuals at higher risk of progressing to severe forms of the disease could optimize the allocation and direction of resources. In this work, we evaluated the performance of different Machine Learning algorithms when predicting clinical outcomes of patients hospitalized with COVID-19, using clinical data from hospital admission alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!