Absence of nasal mucosal atrophy with fluticasone aqueous nasal spray.

Arch Otolaryngol Head Neck Surg

MD, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, 5841 S Maryland Ave, MC1035, Chicago, IL 60637, USA.

Published: February 2001

Objective: To evaluate whether 1 year of continuous treatment with intranasal fluticasone propionate would lead to atrophy in the nasal mucosa compared with an active control, oral terfenadine.

Design: Prospective, randomized, multicenter, open-label, parallel-group study.

Setting: Two tertiary care academic institutions.

Patients: Seventy-five subjects older than 18 years with perennial allergic rhinitis.

Interventions: Patients received either fluticasone propionate aqueous nasal spray, 200 microg once daily, or terfenadine, 60 mg twice daily, for 1 year. Nasal biopsy specimens were obtained before and after 1 year of treatment and were evaluated for evidence of atrophy.

Main Outcome Measures: Epithelial and collagen layer thickness of the nasal mucosa as assessed by light microscopy and the presence and degree of edema, and regularity of collagen fibrils as assessed by electron microscopy. Analyses were performed without knowledge of subject identity or treatment assignment.

Results: Neither fluticasone nor terfenadine treatment led to atrophy in the nasal mucosa by clinical or histologic observation. No significant changes from baseline were observed for any assessment of atrophy. In contrast to what would have been expected if atrophy were to occur, mean epithelial layer thickness in the fluticasone group significantly increased compared with terfenadine treatment (P = .03).

Conclusions: Treatment with intranasal fluticasone for 1 year increases the thickness of the nasal epithelium as compared with a year's treatment with terfenadine and does not lead to atrophy in the nasal mucosa. The increased thickness in the fluticasone treatment may represent repair from epithelial damage caused by chronic allergic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archotol.127.2.193DOI Listing

Publication Analysis

Top Keywords

nasal mucosa
16
atrophy nasal
12
nasal
8
aqueous nasal
8
nasal spray
8
treatment
8
treatment intranasal
8
intranasal fluticasone
8
fluticasone propionate
8
lead atrophy
8

Similar Publications

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.

View Article and Find Full Text PDF

House dust mite induced mucosal barrier dysfunction and type 2 inflammatory responses via the MAPK/AP-1/IL-24 Signaling pathway in allergic rhinitis.

Int Immunopharmacol

January 2025

Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China. Electronic address:

The epithelial barrier, previously regarded only as a physical defense, is now understood to play a vital role in immune responses and the regulation of inflammation. Allergic rhinitis (AR) is a prevalent chronic inflammatory condition of the nasal mucosa, with House Dust Mite (HDM) identified as a significant inhalant allergen that can impair this barrier. IL-24 has emerged as a key cytokine in allergic diseases, involved in maintaining epithelial cell homeostasis.

View Article and Find Full Text PDF

The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of cinnamaldehyde (CA) intervention on transient receptor potential melastatin 8 (TRPM8) expression in human nasal epithelial cells (HNECs) and mouse models of chronic rhinosinusitis (CRS) and determine the alleviating effects of CA on CRS.

Methods: HNECs were treated with CA, and the protein levels and mRNA expression of pro-inflammatory cytokines, namely, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), were measured by enzyme-linked immunosorbent assay and real-time reverse-transcription polymerase chain reaction (RT-PCR). TRPM8 expression levels were examined by RT-PCR and western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!