Activation of mitogen-activated protein kinase (MAPK) pathways leads to cellular differentiation and/or proliferation in a wide variety of cell types, including developing thymocytes. The basic helix-loop-helix (bHLH) proteins E12 and E47 and an inhibitor HLH protein, Id3, play key roles in thymocyte differentiation. We show here that E2A DNA binding is lowered in primary immature thymocytes consequent to T cell receptor (TCR)-mediated ligation. Whereas expression of E2A mRNA and protein are unaltered, Id3 transcripts are rapidly induced upon signaling from the TCR. Activation of Id3 transcription is regulated in a dose-dependent manner by the extracellular signal-regulated kinase (ERK) MAPK module. These observations directly connect the ERK MAPK cascade and HLH proteins in a linear pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/84273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!