Chemokines as regulators of T cell differentiation.

Nat Immunol

Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0414, USA.

Published: February 2001

Chemokines play well established roles as attractants of naïve and effector T cells. New studies indicate that chemokines also have roles in regulating T cell differentiation. Blocking Gi protein-coupled receptor signaling by pertussis toxin as well as deficiencies in G alpha 12, chemokine receptor 2 (CCR2), CCR5, chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1, or MCP-1), CCL3 (macrophage inflammatory protein 1 alpha, or MIP-1 alpha) and CCL5 (RANTES) have all been found to have effects on the magnitude and cytokine polarity of the T cell response. Here we focus on findings in the CCL2-CCR2 and CCL3-CCR5 ligand-receptor systems. The roles of these molecules in regulating T cell fate include possible indirect effects on antigen-presenting cells and direct effects on differentiating T cells. Models to account for the action of chemokines and G protein-coupled receptor signals in regulating T cell differentiation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/84205DOI Listing

Publication Analysis

Top Keywords

cell differentiation
12
regulating cell
12
protein-coupled receptor
8
cell
5
chemokines
4
chemokines regulators
4
regulators cell
4
differentiation chemokines
4
chemokines play
4
play well
4

Similar Publications

Progress of human brain in vitro models stands as a keystone in neurological and psychiatric research, addressing the limitations posed by species-specific differences in animal models. The generation of human neurons from induced pluripotent stem cells (iPSCs) using transcription factor reprogramming protocols has been shown to reduce heterogeneity and improve consistency across different stem cell lines. Despite notable advancements, the current protocols still exhibit several shortcomings.

View Article and Find Full Text PDF

Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19.

Mol Biol Rep

January 2025

Department of Molecular Biology and Genetics, Faculty of Art and Science, Tokat Gaziosmanpasa University, Tokat, 60200, Türkiye.

Background: SARS-CoV-2 infection is marked by an excessive inflammatory response, leading to elevated production of pro-inflammatory cytokines through activation of intracellular pathways like mitogen-activated protein kinase (MAPK). Viruses can use the MAPK signaling pathway to their advantage, but the relationship of this pathway to the severe SARS-CoV-2 period has not been fully elucidated. MAP2K4 is involved in the MAPK signaling pathway and affects cellular processes such as cell-cell junction, cell proliferation, differentiation and apoptosis.

View Article and Find Full Text PDF

Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution.

Adv Sci (Weinh)

January 2025

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China.

DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms.

View Article and Find Full Text PDF

Cell dedifferentiation is considered an important hallmark of cancer. The atavistic reversal to a unicellular-like (UC) state is a less widely accepted concept, so far not included in the conventional hallmarks. The activated expression of ontogenetically earlier and evolutionary earlier genes in cancers supports both theories because ontogenesis partially recapitulates phylogenesis during cell differentiation (the cellular biogenetic law).

View Article and Find Full Text PDF

Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!