Three-dimensional force systems from vertically activated orthodontic loops.

Am J Orthod Dentofacial Orthop

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.

Published: January 2001

When both vertical alignment and first-order rotation of teeth are to occur simultaneously, a 3-dimensional force system is required. This numerical study evaluated several appliances (rectangular loops and L-loops) used to vertically align teeth. Consideration was given to how these designs might be modified to produce the appropriate force system to allow both movements to occur simultaneously. It was found that the rectangular loop was the most appropriate choice for first-order corrections. For the rectangular loops studied, the in-plane force system was shown to be essentially independent of the out-of-plane effects, which allowed the 2 corrections to be controlled separately.

Download full-text PDF

Source
http://dx.doi.org/10.1067/mod.2001.110810DOI Listing

Publication Analysis

Top Keywords

force system
12
occur simultaneously
8
rectangular loops
8
three-dimensional force
4
force systems
4
systems vertically
4
vertically activated
4
activated orthodontic
4
orthodontic loops
4
loops vertical
4

Similar Publications

Proximity-Induced Superconductivity in Ferromagnetic FeGeTe and Josephson Tunneling through a van der Waals Heterojunction.

ACS Nano

January 2025

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.

View Article and Find Full Text PDF

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).

View Article and Find Full Text PDF

Synergistic binding ability of electrostatic tweezers and femtosecond laser-structured slippery surfaces enabling unusual droplet manipulation applications.

Lab Chip

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.

We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions.

View Article and Find Full Text PDF

This study investigated the relationships between performance and force-velocity (F-v) parameters obtained from a ballistic lower limb (BLL) and a 30-m sprint test in 24 adolescent elite footballers (13.2-15.1 years old).

View Article and Find Full Text PDF

The actin-based motor myosin-19 (Myo19) exerts force on mitochondrial membrane receptors Miro1/2, influencing endoplasmic reticulum (ER)-mitochondria contact sites and mitochondrial cristae structure. The Mitochondrial Intermembrane Bridging (MIB) complex connects the outer and inner mitochondrial membranes at the cristae junction through the MICOS system. However, the interaction between Myo19, Miro1/2, and the MIB/MICOS complex in cristae regulation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!