We recently demonstrated that dopamine (DA) as well as different DA receptor agonists and antagonists are able to decrease within a few minutes the aromatase activity (AA) measured in vitro in homogenates or in explants of the quail preoptic area - hypothalamus. In addition, DA also appears to regulate AA, in vivo presumably by modifying enzyme synthesis. The cellular mechanisms and the anatomical substrate that mediate these controls of AA by DA are poorly understood. Tyrosine hydroxylase-immunoreactive (TH-ir) fibers and punctate structures have been previously observed in close vicinity of aromatase-immunoreactive (ARO-ir) cells in the quail medial preoptic nucleus (POM) and bed nucleus striae terminalis (BST) but these fibers could reflect a noradrenergic innervation. We also do not know whether aromatase cells are dopaminoceptive. The main goal of the present study was therefore to bring more information on the anatomical relationships between aromatase expressing neurons and the dopaminergic system in the quail brain. The visualization by immunocytochemistry of DA and of the D1 receptor associated protein DARPP-32 was used to address these questions. DA-ir fibers were observed in the quail forebrain and overlapped extensively with nuclei that contain high densities of ARO-ir cells such as the POM and BST. This confirms that the previously reported TH-ir innervation of ARO-ir cells is, at least in part, of dopaminergic nature. DARPP-32-immunoreactive cells were found in periventricular position throughout the hypothalamus. DARPP-32-ir cells were also observed in telencephalic and mesencephalic areas (hyperstriatum accessorium, paleostriatum, nucleus intercollicularis, optic tectum). DARPP-32-ir fibers were widespread in tel-, di-, and mes-encephalic areas. The highest densities of immunoreactive fibers were detected in the lobus parolfactorius, paleostriatum augmentatum and substantia nigra/area ventralis of Tsai. In double-labeled sections, appositions between DARPP-32 fibers and ARO-ir cells were present in the dorsolateral POM and BST but DARPP-32 immunoreactivity was not detected in the ARO-ir perikarya (no colocalization). These data confirm the presence of a dopaminoceptive structures within the main cell clusters of ARO-ir cells in the quail brain but provide no evidence that these ARO-ir cells are themselves dopaminoceptive. Because DARPP-32 is not present in all types of cells expressing DA receptors, the presence of DA receptors that would not be associated with DARPP-32 in ARO-ir cells still remains to be investigated

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-0618(00)00094-6DOI Listing

Publication Analysis

Top Keywords

aro-ir cells
28
quail brain
12
cells
11
aro-ir
8
cells quail
8
cells dopaminoceptive
8
pom bst
8
quail
6
fibers
6
darpp-32
5

Similar Publications

Some components of male sexual and agonistic behaviours are considered to be regulated by the same neurocircuitry in the medial preoptic nucleus (POM) and the medial portion of bed nucleus of the stria terminalis (BSTM). To better understand this neurocircuitry, numbers of aromatase- (ARO) or arginine vasotocin- (AVT) immunoreactive (ir) neurones expressing immediate early gene protein FOS were compared in the POM and BSTM of male chickens following sexual or agonistic behaviours. Observations were made on males showing: (i) appetitive (courtship) and consummatory (copulation) sexual behaviours; (ii) only appetitive sexual behaviour, or (iii) displaying agonistic behaviour toward other males.

View Article and Find Full Text PDF

In birds and mammals, aromatase activity in the preoptic-hypothalamic region (HPOA) is usually higher in males than in females. It is, however, not known whether the enzymatic sex difference reflects the differential activation of aromatase transcription or some other control mechanism. Although sex differences in aromatase activity are clearly documented in the HPOA of Japanese quail (Coturnix japonica), only minimal or even no differences at all were observed in the number of aromatase-immunoreactive (ARO-ir) cells in the medial preoptic nucleus (POM) and in the medial part of the bed nucleus striae terminalis (BSTM).

View Article and Find Full Text PDF

In Japanese quail (Coturnix japonica), previous studies indicated that the distribution of reduced nicotinamide dinucleotide phosphate (NADPH) diaphorase overlaps with steroid-sensitive areas that contain dense populations of aromatase-immunoreactive (ARO-ir) cells. We investigated here the anatomical relationships between aromatase (ARO) and nitric oxide synthase (NOS)-containing cells that were visualized both by NOS-immunohistochemistry and NADPH-histochemistry. The distribution of ARO-ir and of NADPH-positive cells in the forebrain observed here matched exactly the distribution previously reported.

View Article and Find Full Text PDF

Until recently, it has been difficult to identify the exact location of aromatase containing cells in the brain. The development of new antibodies has provided a sensitive tool to analyze the distribution of aromatase immunoreactive (ARO-ir) material at a cellular level of resolution. In the present study we examined, for the first time, the distribution of ARO-ir cells in the brain of a reptile, the red-sided garter snake, at the beginning of the winter dormancy.

View Article and Find Full Text PDF

Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica).

Horm Behav

November 2001

Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour, B-4020 Liège, Belgium.

Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!