The oxidative modification of low density lipoprotein (LDL) may play a significant role in atherogenesis. HOCl generated by the myeloperoxidase/H2O2/Cl- system of activated neutrophils may be operative in vivo making LDL atherogenic. Tyrosine has been found to be oxidized by HOCl to p-hydroxyphenylacetaldehyde (p-HA) capable of modifying phospholipid amino groups in LDL. As an amphiphatic phenolic compound, p-HA may have the potential to act as an antioxidant in the lipid phase of LDL. The present results show that (a) tyrosine exerts a protective effect on LDL modification by HOCl, (b) p-HA could act as antioxidant associated with the lipoprotein preventing cell- and transition metal ion-mediated LDL oxidation and (c) p-HA was able to scavenge free radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(01)02131-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!