Human preimplantation embryos exhibit high levels of apoptotic cells and high rates of developmental arrest during the first week in vitro. The relation between the two is unclear and difficult to determine by conventional experimental approaches, partly because of limited numbers of embryos. We apply a mixture of experiment and mathematical modeling to show that observed levels of cell death can be reconciled with the high levels of embryo arrest seen in the human only if the developmental competence of embryos is already established at the zygote stage, and environmental factors merely modulate this. This suggests that research on improving in vitro fertilization success rates should move from its current concentration on optimizing culture media to focus more on the generation of a healthy zygote and on understanding the mechanisms that cause chromosomal and other abnormalities during early cleavage stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC29312 | PMC |
http://dx.doi.org/10.1073/pnas.98.4.1655 | DOI Listing |
J Inflamm Res
January 2025
Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China.
Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver.
View Article and Find Full Text PDFJ Bioinform Syst Biol
January 2024
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.
Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.
Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.
Front Immunol
January 2025
The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
Background: The combination of local therapy with lenvatinib and programmed cell death protein-1 (PD-1) inhibitors represents an emerging treatment paradigm for unresectable hepatocellular carcinoma (uHCC). Our study sought to investigate the interrelationship between gut microbiota and intratumoral microbiota in the context of triple therapy, with a view to identifying potential biological markers.
Methods: The gut microbial community profiles of patients with primary untreated hepatocellular carcinoma (HCC) and those treated with local therapy combined with lenvatinib and PD-1 inhibitors were analyzed by 16S rRNA gene amplicon sequencing.
Front Pharmacol
January 2025
Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!