Mechanisms of neointima formation and remodeling in the porcine coronary artery.

Circulation

Department of Pathology, University of Geneva, Divisions of Cardiology, University Hospital Geneva, Geneva, Switzerland.

Published: February 2001

Background: To characterize the cells responsible for neointima formation after porcine coronary artery wall injury, we studied the expression of smooth muscle cell (SMC) differentiation markers in 2 models: (1) self-expanding stent implantation resulting in no or little interruption of internal elastic lamina and (2) percutaneous transluminal coronary angioplasty (PTCA) resulting in complete medial rupture and exposure of adventitia to blood components.

Methods And Results: The expression of alpha-smooth muscle (SM) actin, SM myosin heavy chain isoforms 1 and 2, desmin, and smoothelin was investigated by means of immunohistochemistry and Western blots in tissues of the arterial wall collected at different time points and in cell populations cultured from these tissues. The expression of smoothelin, a marker of late SMC differentiation, was used to discriminate between SMCs and myofibroblasts. Both stent- and PTCA-induced neointimal tissues and their cultured cell populations expressed all 4 markers. The adventitial tissue underlying PTCA-induced lesions temporarily expressed alpha-SM actin, desmin, and SM myosin heavy chain isoforms, but not smoothelin. When placed in culture, adventitial cells expressed only alpha-SM actin.

Conclusions: Our results suggest that SMCs are the main components of coronary artery neointima after both self-expanding stent implantation and PTCA. The adventitial reaction observed after PTCA evolves with a chronology independent of that of neointima formation and probably corresponds to a myofibroblastic reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.103.6.882DOI Listing

Publication Analysis

Top Keywords

neointima formation
12
coronary artery
12
porcine coronary
8
smc differentiation
8
self-expanding stent
8
stent implantation
8
myosin heavy
8
heavy chain
8
chain isoforms
8
cell populations
8

Similar Publications

Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.

Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Bone marrow-derived NGFR-positive dendritic cells regulate arterial remodeling.

Am J Physiol Cell Physiol

February 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

Vessel Wall Histologic Changes in a Porcine Model of Arteriovenous Fistula Stenosis Treated with Percutaneous Transluminal Angioplasty.

J Vasc Interv Radiol

December 2024

Vascular and Interventional Radiology Translational Research Lab, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Article Synopsis
  • The study investigated how different treatments (balloon angioplasty vs. drug-coated balloons) affect the changes in blood vessel tissues following arteriovenous fistula stenosis in pigs with chronic kidney disease.
  • Significant differences in tissue composition were observed, with drug-coated balloons leading to lower neointimal growth and higher endothelial cell counts compared to standard angioplasty.
  • The findings suggest that using drug-coated balloons may improve vessel healing and reduce complications over time, as shown by varied immune cell responses and tissue growth patterns.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!