Plants monitor changes in the ambient light environment by highly specialised photoreceptors, which include the red/far-red photoreversible phytochromes, the blue-light-absorbing cryptochromes and phototropin and the so-far-unidentified UVB photoreceptor(s). Light easily penetrates plant organs/tissues and reaches even the subcellular compartments of various cell types. Therefore, it is not surprising that the determination of the intracellular localisation of photoreceptors has been, for many years, a major, and often controversial, subject of plant photobiology and cell biology research. Phototropin, one of the blue-light photoreceptors of higher plants, controls phototropism by monitoring the direction of light, and it is localised in or at the plasmalemma. In contrast, the subcellular localisation of phytochromes changes dynamically and exhibits a very complex pattern. These photoreceptors are localised in the cytosol in dark- grown tissues. Irradiation, however, induces import of phytochromes into the nucleus. The import occurs in a light-quality- and light-quantity-dependent fashion and, as such, seems to be unique to higher plants. Light-induced accumulation of phytochromes in the nuclei correlates well with various physiological responses mediated by these photoreceptors. These observations indicate that light-dependent intracellular redistribution of phytochrome photoreceptors is one of the major regulatory steps in photomorphogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.114.3.475 | DOI Listing |
PLoS Genet
January 2025
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFThe retinal pigment epithelium (RPE) surrounds the posterior eye and maintains the health and function of the photoreceptors. Consequently, RPE dysfunction or damage has a devastating impact on vision. Due to complex etiologies, there are currently no cures for patients with RPE degenerative diseases, which remain some of the most prevalent causes of vision loss worldwide.
View Article and Find Full Text PDFThe formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!