Potato tubers exhibit both homolytic and heterolytic hydroperoxide fatty acid-cleaving activities.

Biochem Soc Trans

Unité de Chimie Générale et Organique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés, 2-B-5030 Gembloux, Belgium.

Published: December 2000

The action of a crude potato-tuber extract on 9- and 13-hydroperoxides of linoleic and linolenic acids was investigated. HPLC analysis revealed that 50% of the 9-hydroperoxide isomers and almost all the 13-hydroperoxide isomers were rapidly enzymically metabolized. No degradation of fatty acid hydroperoxides was observed with a thermally denatured enzymic extract. GC-MS identification of the volatiles formed by the reaction revealed that no volatiles were detected from the 9-hydroperoxide isomers, whereas 13-hydroperoxide of linolenic acid was cleaved into (Z)-3-hexenal, pentenols or dimers of pentene.

Download full-text PDF

Source

Publication Analysis

Top Keywords

9-hydroperoxide isomers
8
isomers 13-hydroperoxide
8
potato tubers
4
tubers exhibit
4
exhibit homolytic
4
homolytic heterolytic
4
heterolytic hydroperoxide
4
hydroperoxide fatty
4
fatty acid-cleaving
4
acid-cleaving activities
4

Similar Publications

Heme-initiated decomposition of unsaturated fatty acid hydroperoxides creates alkoxyl radicals that propagate a complex series of reactions to hydroxy, keto, epoxy and aldehydic products. Herein, among the products from the hematin-catalyzed degradation of 9-hydroperoxy-linoleic acid (9-HPODE), we observed a double peak on normal-phase HPLC that resolved on RP-HPLC into equal proportions of two epoxy-allylic ketones with identical UV spectra. Their proton NMR spectra were also indistinguishable and consistent with 9,10--epoxy-11-13-keto- and 9-keto-10-12,13--epoxy-octadecenoic acids.

View Article and Find Full Text PDF

The product specificity and mechanistic peculiarities of two allene oxide synthases, tomato LeAOS3 (CYP74C3) and maize ZmAOS (CYP74A19), were studied. Enzymes were vortexed with linoleic acid 9-hydroperoxide in a hexane-water biphasic system (20-60 s, 0 °C). Synthesized allene oxide (9,10-epoxy-10,12-octadecadienoic acid; 9,10-EOD) was trapped with ethanol.

View Article and Find Full Text PDF

The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE).

View Article and Find Full Text PDF

Effect of chemical form, heating, and oxidation products of linoleic acid on rumen bacterial population and activities of biohydrogenating enzymes.

J Dairy Sci

July 2015

Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31076 Toulouse, France; INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France; Université de Toulouse INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France. Electronic address:

Heating polyunsaturated fatty acids (PUFA) produces oxidation products, such as hydroperoxides, aldehydes, and oxypolymers, which could be responsible at least in part for modification of PUFA rumen biohydrogenation (BH). Three in vitro experiments were conducted to investigate the effects of linoleic acid (cis-9,cis-12-C18:2) oxidation products on BH. In the first experiment, we studied the effects of free linoleic acid (FLA), heated FLA (HFLA, at 150 °C for 6h), triacylglycerols of linoleic acid (TGLA), heated TGLA (HTGLA, at 150 °C for 6h), 13-hydroperoxide (13HPOD), trans-2-decenal (T2D), and hexanal (HEX) on BH in vitro after 6 and 24h of incubation.

View Article and Find Full Text PDF

Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

ChemSusChem

November 2013

Department of Chemistry, Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart (Germany).

Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!