Baicalein (5,6,7-trihydroxyflavone, 1) is of interest because of its broad spectrum of biological activity. It is a constituent of the east Asian herbal remedy, "Sho-saiko-to". The 3D structure of 1 was determined using X-ray diffraction. The compound exists in an almost planar conformation with a C-2-C-1' bond distance of 1.476(5) A. Hydrogen-bonding interactions predominate in the crystal structure. The position of the three hydroxyl groups maximizes intramolecular hydrogen bonding, and each of the hydroxyl hydrogen atoms is a donor in a three-center hydrogen bond. The carbonyl oxygen, O-4, is an acceptor in an intramolecular hydrogen bond (with OH-5). Two molecules of 1 exist as hydrogen-bonded dimers related by inversion center (-x + 1, -y, -z + 1). O-4 is also an acceptor in an intermolecular hydrogen bond with OH-6. The planarity of the flavone framework is dependent on structural and/or electronic forces that stabilize the negative charge on the exocyclic oxygen atom, O-4. Compound 1, therefore, is planar in any situation where forces can stabilize the negative charge on O-4. Consistent with this, UV absorbance studies performed on 1-DNA complexes with varying concentrations of 1 strongly suggest intercalation of 1 within the double helix, followed by possible interstrand cross-links.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np000068s | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
In this article, we present three mesoscopic models for water. All three models make use of local density-dependent interaction potentials, as employed within the Pagonabarraga-Frenkel framework [Pagonabarraga, I.; Frenkel, D.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany.
The persistent organic radical 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) protects its NO radical center by four methyl groups. Two of them are arranged tightly (t) on one side of the six-membered puckered heterocycle, and the other two more openly (o) on the other side. It is shown by OH stretching infrared spectroscopy in heated supersonic jet expansions that the hydrogen bond and aromatic ring of a first solvating benzyl alcohol have almost no preference for either side.
View Article and Find Full Text PDFHeliyon
January 2025
Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.
The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!