A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A method to evaluate the isothermal effectiveness factor for dynamic oxygen into mycelial pellets in submerged cultures. | LitMetric

A method to evaluate the isothermal effectiveness factor for dynamic oxygen into mycelial pellets in submerged cultures.

Biotechnol Prog

Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Aptado Postal 14-740, C. P. 07000, México D.F., México.

Published: June 2001

Several models have been developed simulating O2 transfer in bioreactors, but three limitations are often found: (i) an inadequate kinetic representation of O2 consumption or wrong boundary conditions, (ii) unrealistic parameter values, and (iii) inadequate experimental systems. In our study we minimized those possible sources of error. Oxygen uptake rate, void fraction of the pellet, and external O2 mass transfer coefficient were experimentally obtained from bioreactor studies in which pellets of Gibberella fujikuroi were naturally formed. Michaelis-Menten kinetics and diffusion equations were used to describe the O2 consumption rate and to evaluate the effectiveness factor in dynamic mode. The nonlinear mathematical model proposed was solved by the orthogonal collocation technique. The O2 consumption rate in pellets of G. fujikuroi of 1.7-2.0 mm is only marginally inhibited by diffusion constraints under conditions tested. Simulation analysis showed that the effectiveness factor decreased as the Thiele modulus and pellet diameter increased. The proposed model was applied to experimental data reported for other fungal pellets and allowed to predict optimal conditions for O2 transfer into mycelial pellets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp0001361DOI Listing

Publication Analysis

Top Keywords

effectiveness factor
12
factor dynamic
8
mycelial pellets
8
consumption rate
8
pellets
5
method evaluate
4
evaluate isothermal
4
isothermal effectiveness
4
dynamic oxygen
4
oxygen mycelial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!