1,3-Butadiene (BD) is carcinogenic and mutagenic in B6C3F1 mice. BD inhalation induces an increased frequency of specific base substitution mutations in the bone marrow and spleen of B6C3F1 lacI transgenic mice. BD is bioactivated to at least three mutagenic metabolites: 1,2-epoxybutene (EB), 1,2-epoxy-3,4-butanediol (EBD), and 1,2,3,4-diepoxybutane (DEB), however, the contribution of these individual metabolites to the in vivo mutational spectrum of BD is uncertain. In the present study, lacI transgenic mice were exposed by inhalation (6h per day, 5 days per week for 2 weeks) to 0 or 29.9ppm of the BD metabolite, EB to assess its contribution to the in vivo mutational spectrum of BD. No increase in lacI mutant frequency was observed in the bone marrow or spleen of EB-exposed mice. The lack of mutagenicity in the bone marrow or spleen likely relate to insufficient levels of EB reaching these tissues. The lacI mutant frequency was increased 2.7-fold in the lungs of EB-exposed mice (mean+/-S.D., 9.9+/-3.0x10(-5)) compared to air control mice (3.6+/-0.7x10(-5)). DNA sequence analysis of 65 and 66 mutants from the lungs of air control and EB-exposed mice, respectively, revealed an increase in the frequency of two categories of base substitution mutation and deletions. Like mice exposed to BD, EB-exposed mice had an increased frequency of A:T-->T:A transversions. However, in contrast to the BD mutational spectra, G:C-->A:T transitions at 5'-CpG-3' sequences, occurred with increased frequency in the EB-exposed mice. The increased frequency of deletions as well as the induction of two tandem mutations and a tandem deletion in the lungs of EB-exposed mice are also inconsistent with previous mutational spectra from BD-exposed mice or EB-exposed cells in culture. We hypothesize that the direct in vivo mutagenicity and further in situ metabolism of EB in the lungs of EB-exposed mice played a prominent role in the generation of the current mutational spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0027-5107(00)00122-6 | DOI Listing |
Arch Toxicol
December 2024
Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
Mutat Res
January 2001
Chemical Industry Institute of Toxicology, Six Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709-2137, USA.
1,3-Butadiene (BD) is carcinogenic and mutagenic in B6C3F1 mice. BD inhalation induces an increased frequency of specific base substitution mutations in the bone marrow and spleen of B6C3F1 lacI transgenic mice. BD is bioactivated to at least three mutagenic metabolites: 1,2-epoxybutene (EB), 1,2-epoxy-3,4-butanediol (EBD), and 1,2,3,4-diepoxybutane (DEB), however, the contribution of these individual metabolites to the in vivo mutational spectrum of BD is uncertain.
View Article and Find Full Text PDFJ Mass Spectrom
April 1998
Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill 27599-7400, USA.
1,3-Butadiene (BD) is a high volume industrial chemical which is known as a multi-site rodent carcinogen and is classified as a probable human carcinogen. Covalent interactions of the reactive epoxy metabolites of BD with DNA lead to the formation of DNA adducts which may cause mutations and tumor formation. In the present work, liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was employed for analyses of BD-induced DNA adducts in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!