3,4-Dihydroxyphenylglycolaldehyde is the monoamine oxidase-A metabolite of two catecholamine neurotransmitters, epinephrine and norepinephrine. This aldehyde metabolite and its synthesizing enzymes increase in cell bodies of catecholamine neurons in Alzheimer's disease. To test the hypothesis that 3,4-dihydroxyphenylglycolaldehyde, but not epinephrine or its major metabolite 4-hydroxy-3-methoxyphenylglycol, is a neurotoxin, we injected 3,4-dihydroxyphenylglycolaldehyde onto adrenergic neurons in the rostral ventrolateral medulla. Injections of epinephrine or 4-hydroxy-3-methoxyphenylglycol were made into the same area of controls. A dose response and time study were performed. Adrenergic neurons were identified by their content of the epinephrine synthesizing enzyme, phenylethanolamine N-methyltransferase, immunohistochemically. Apoptosis was evaluated by in situ terminal deoxynucleotidyl-transferase mediated dUTP nick end label staining. Injection of 3,4-dihydroxyphenylglycolaldehyde in amounts as low as 50 ng results in loss of adrenergic neurons and apoptosis after 18 h. The degree of neurotoxicity is dose and time dependent. Doses of 3,4-dihydroxyphenylglycolaldehyde 10-fold higher produce necrosis. Neither epinephrine nor 4-hydroxy-3-methoxyphenylglycol are toxic. A 2.5 microg injection of 3,4-dihydroxyphenylglycolaldehyde is toxic to cortical neurons but not glia. Active uptake of the catecholamine-derived aldehyde into differentiated PC-12 cells is demonstrated. Implications of these findings for catecholamine neuron death in neurodegenerative diseases are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(00)03199-1DOI Listing

Publication Analysis

Top Keywords

adrenergic neurons
16
epinephrine 4-hydroxy-3-methoxyphenylglycol
8
injection 34-dihydroxyphenylglycolaldehyde
8
neurons
6
34-dihydroxyphenylglycolaldehyde
6
epinephrine
5
catecholamine
4
catecholamine monoamine
4
monoamine oxidase
4
metabolite
4

Similar Publications

Left superior cervical ganglia lymph node mimicry and its role in rat ventricular arrhythmias following myocardial infarction.

Acta Physiol (Oxf)

February 2025

Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.

Aim: Sympathetic overactivation may lead to severe ventricular arrhythmias (VAs) post-myocardial infarction (MI). The superior cervical ganglion (SCG) is an extracardiac sympathetic ganglion which regulates cardiac autonomic tone. We aimed to investigate the characteristics and functional significance of SCG on neuro-cardiac communication post-MI.

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants.

View Article and Find Full Text PDF

Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs.

Nat Commun

January 2025

Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).

View Article and Find Full Text PDF

Tooth loss, periodontal infection and their relationship to cognitive impairment and other dementias: A review.

Neuro Endocrinol Lett

December 2024

Private Practice, Zubná Pohotovosť, s.r.o. Bratislava, Krížna 44, Slovakia.

Our review study addresses the issue of tooth loss, which is caused by loss of masticatory function and its impact on cognitive functions, dementia, and Alzheimer's disease. Numerous studies have confirmed a positive correlation between premature tooth loss, reduction in masticatory function and significant cognitive decline observed through learning disabilities, including overcoming ordinary life problems to early and advanced forms of dementia. Reduced numbers of teeth in the main food processing area, i.

View Article and Find Full Text PDF

Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN neurons.

Commun Biol

December 2024

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!