Axenically grown Ammi majus plantlets were inoculated with seven different Agrobacterium rhizogenes strains. Hairy root lines were established only after inoculation with the two agropine strains: A4 and LBA9402. The growth rate of hairy root cultures was about thirty times faster than that of callus and cell suspension cultures. Polymerase chain reaction with primers for the genes rolB and rolC confirmed the integration of the T-DNA fragment of Ri plasmid of A. rhizogenes to the genome of hairy roots obtained after transformation by both Agrobacterium strains. The furanocoumarins (psoralen, xanthotoxine, bergapten and imperatorin) usually found in seeds of A. majus were not detected in callus, cell suspension and hairy root cultures using Gas chromatography-mass spectrometry (GC-MS). However, umbelliferone, a precursor of furanocoumarins, was detected in callus, cell suspension and hairy root cultures. The umbelliferone content in extracts of hairy root cultures, obtained after transformation by A4, was similar to that determined in A. majus seeds (19 µg/g DW) and higher than those obtained for cell suspension and callus cultures (2 and 9 µg/g DW, respectively).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-9452(00)00381-2 | DOI Listing |
J Physiol
January 2025
School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.
C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!