Somatic hybrid plants were produced after protoplast electrofusion between a dihaploid potato, cv. BF15, and a wild tuber-bearing relative, Solanum phureja, with a view to transferring bacterial wilt resistance into potato lines. A total of ten putative hybrids were selected. DNA analysis using flow cytometry revealed that six were tetraploids, two mixoploids, one amphiploid and one octoploid. In the greenhouse, the putative hybrids exhibited strong vigor and were morphologically intermediate, including leaf form, flowers and tuber characteristics. The hybrid nature of the ten selected plants was confirmed by examining isoenzyme patterns for esterases and peroxidases, and analysis of RAPD and SSR markers. Analysis of chloroplast genome revealed that eight hybrids possessed chloroplast (ct) DNA of the wild species, S. phureja, and only two contained Solanum tuberosum ct type. Six hybrid clones, including five tetraploids and one amphiploid, were evaluated for resistance to bacterial wilt by using race 1 and race 3 strains of Ralstonia solanacearum, originating from Reunion Island. Inoculations were performed by an in vitro root dipping method. The cultivated potato was susceptible to both bacterial strains tested. All somatic hybrids except two were tolerant to race 1 strain, and susceptible to race 3 strain. Interestingly, the amphiploid hybrid clone showed a good tolerance to both strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-9452(00)00375-7 | DOI Listing |
Plant Dis
January 2025
University of Minnesota Twin Cities, Department of Plant Pathology, 1991 Upper Buford circle, 495 Borlaug Hall, Saint Paul, Minnesota, United States, 55108;
Ginger (Zingiber officinale) is an herbaceous perennial in the Zingiberaceae family grown primarily in tropical to subtropical biomes as a culinary spice, a traditional medicine, and a landscaping plant. While ginger grows at soil temperatures above 20°C, several farmers in the upper Midwestern US farmers grows short-season ginger in high tunnels. In 2023 and 2024, growers in southeastern Minnesota reported a new disease of ginger.
View Article and Find Full Text PDFData Brief
February 2025
Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh.
Epipremnum aureum, sometimes known as the Money Plant, is a popular houseplant known for its hearts-shaped leaves and durability. Commonly referred to as Golden Pothos or Devil's Ivy, it is also appreciated for its ornamental value and air cleaning ability. They say that these plants are attractive to many people owing to their tolerance to several conditions and easy care, therefore, it is no surprise that they are found in many households and workplaces.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!