Modulation of rat medial vestibular nucleus neurone activity by vasopressin and noradrenaline in vitro.

Neurosci Lett

Department of Biomedical Sciences (Human Physiology and Bioengineering), University of Sassari, V.le S. Pietro 43/B, I-07100, Sassari, Italy.

Published: February 2001

In the present study, we examined the effects of bath application of vasopressin and noradrenaline on the spontaneous tonic discharge of medial vestibular nucleus (MVN) neurones and investigated if there is an interaction between the two drugs in an in vitro slice preparation of the rat brainstem containing the MVN. The results showed that vasopressin did not affect the spontaneous discharge rate of MVN neurones when applied either as a 60 s pulse or when the drug continuously perfused the slice for a period of 10 min. In contrast, noradrenaline affected the spontaneous discharge rate of the majority of cells tested (53/60, 88%). Noradrenaline excited the majority (46/53, 87%) of MVN neurones through both alpha1 and beta noradrenergic receptor-linked mechanisms. The remaining cells (7/53, 13%) were inhibited by noradrenaline through an alpha2 noradrenergic receptor-linked mechanism. Neither the excitatory nor inhibitory effects of noradrenaline were modified by vasopressin when the two drugs were applied together.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(00)01750-xDOI Listing

Publication Analysis

Top Keywords

mvn neurones
12
medial vestibular
8
vestibular nucleus
8
vasopressin noradrenaline
8
noradrenaline spontaneous
8
spontaneous discharge
8
discharge rate
8
noradrenergic receptor-linked
8
noradrenaline
6
modulation rat
4

Similar Publications

The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified.

View Article and Find Full Text PDF

Commissural and monosynaptic inputs to medial vestibular nucleus GABAergic neurons in mice.

Front Neurol

October 2024

Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China.

Article Synopsis
  • The study explores how MVN GABAergic neurons help restore balance during acute peripheral vestibular dysfunction, aiming to understand their monosynaptic inputs.
  • Researchers used a modified rabies virus and VGAT-IRES-Cre mice to identify the connections of these neurons, finding that 60 different nuclei primarily from the cerebellum and medulla project to them.
  • The findings highlight specific nuclei that contribute densely or moderately to MVN GABAergic neurons, emphasizing their regulatory roles and potential implications for developing treatment strategies for vestibular disorders.*
View Article and Find Full Text PDF

Neonatal GABAergic transmission primes vestibular gating of output for adult spatial navigation.

Cell Mol Life Sci

March 2024

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China.

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets.

View Article and Find Full Text PDF

Background: The commissural inhibitory system between the bilateral medial vestibular nucleus (MVN) plays a key role in vestibular compensation. Calcium-binding protein parvalbumin (PV) is expressed in MVN GABAergic neurons. Whether these neurons are involved in vestibular compensation is still unknown.

View Article and Find Full Text PDF

Background: This study aimed to investigate the effects of unilateral labyrinthectomy (UL) on monoamine neurotransmitters in the medial vestibular nucleus (MVN) of rats.

Methods: Adult Sprague-Dawley rats were utilized for the vestibular impaired animal model through UL. The success of the model establishment and the recovery process were evaluated using vestibular behavioral tests, including spontaneous nystagmus, postural asymmetry, and balance beam test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!