Ral promotes anchorage-independent growth of a human fibrosarcoma, HT1080.

Biochem Biophys Res Commun

Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.

Published: January 2001

Ral has been shown to act downstream of Ras oncoprotein. However, the role of Ral in Ras-induced cellular transformation has not been fully understood. To test the involvement of Ral in Ras-induced anchorage-independent growth, we ectopically expressed Ral mutants in HT1080 cells, whose ability to grow in the absence of anchorage depends on the oncogenic mutation of N-ras. Expression of an activated mutant of Ral resulted in enhanced growth of HT1080 cells in soft agar, whereas a dominant-negative mutant of Ral inhibited their anchorage-independent growth. Moreover, the activated Ral mutant decreased the amount of p27(Kip1) in the absence of adhesion, while the dominant-negative mutant increased it. These results suggest that Ral is involved in the Ras-dependent anchorage-independent growth of HT1080 cells by regulating p27(Kip1).

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2000.4233DOI Listing

Publication Analysis

Top Keywords

anchorage-independent growth
16
ht1080 cells
12
ral
9
ral ras-induced
8
mutant ral
8
growth ht1080
8
dominant-negative mutant
8
growth
5
ral promotes
4
anchorage-independent
4

Similar Publications

Tumor Protein D53 (TPD53): Involvement in Malignant Transformation of Low-Malignant Oral Squamous Cell Carcinoma Cells.

Biomedicines

November 2024

Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.

: The tumor protein D52 (TPD52) family includes TPD52, TPD53, TPD54, and TPD55. The balance between TPD52 and TPD54 expression plays an important role in high-malignant oral squamous cell carcinoma (OSCC) cells. However, the relationship between TPD53 and OSCC cells (particularly low-malignant OSCC cells) remains unclear.

View Article and Find Full Text PDF

Based on the antigenic similarity between tumor cells and embryonic stem cells (ESCs), several recent studies report the use of intact murine ESCs or exosomes from murine ESCs as cancer vaccines. Since the capacity for self-renewal is one of the most specialized properties shared between ESCs and a subset of tumor cells, cancer stem cells (CSCs), we investigated whether the undifferentiated state of murine ESCs is essential for the prophylactic effectiveness of an ESC-based vaccine. The undifferentiated state of ES-D3, a murine ESC line, was essential for their anchorage-independent growth potential.

View Article and Find Full Text PDF

Hepatocellular carcinoma hosts cholinergic neural cells and tumoral hepatocytes harboring targetable muscarinic receptors.

JHEP Rep

January 2025

Hepatitis Viruses and Pathobiology of Chronic Liver Diseases - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon - Hepatology Institute of Lyon F - IHU EVEREST, University of Lyon 1, ISPB, France, CNRS UMR5286, Centre Léon, Lyon, France.

Background & Aims: Owing to unexplained interpatient variation and treatment failure in hepatocellular carcinoma (HCC), novel therapeutic approaches remain an urgent clinical need. Hepatic neurons, belonging to the autonomic nervous system (ANS), mediate liver/whole body crosstalk. Pathological innervation of the ANS has been identified in cancer, nurturing tumor stroma and conferring stronger carcinogenic properties.

View Article and Find Full Text PDF
Article Synopsis
  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.
View Article and Find Full Text PDF

Background: The ability to metabolic reprogramming is a distinctive feature of metastatically active tumor cells. A classic example of metabolic reprogramming, characteristic of almost all malignant cells, is aerobic glycolysis. Therefore, inhibition of glycolysis in tumor cells is considered a promising strategy for antitumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!