Response of cell cycle proteins to neurotrophic factor and chemokine stimulation in human neuroglia.

Exp Neurol

Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.

Published: February 2001

Increased expression of neurotrophins (e.g., NGF, BDNF) and chemokines (e.g., RANTES) has been observed in neurodegenerative diseases. We examined the effect of these factors on intracellular signaling cascades inducing cell cycle proteins p53, pRb, and E2F1 in human fetal mixed neuronal and glial cells. Comparing neurotrophin- and chemokine-treated cultures with untreated controls showed altered subcellular localization and expression of hyperphosphorylated retinoblastoma protein (ppRb), E2F1, and p53. Using immunofluorescent laser confocal microscopy, E2F1 and ppRb were detected exclusively in neuronal nuclei in control cultures while p53 was cytoplasmic in astrocytes and nuclear in neurons. Following treatment with neurotrophins, E2F1 and ppRb were observed in the cytoplasm of neurons, while p53 was observed in both neuronal and astrocytic nuclei. Similar findings were observed following treatment with RANTES. Semiquantitative analysis using immunoblots showed an increase in the amount of phosphorylated pRb in treated cultures. Induction of cell cycle proteins may play a role in neurodegeneration associated with neurotrophin and chemokine stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683587PMC
http://dx.doi.org/10.1006/exnr.2000.7594DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
cycle proteins
12
chemokine stimulation
8
e2f1 pprb
8
response cell
4
proteins neurotrophic
4
neurotrophic factor
4
factor chemokine
4
stimulation human
4
human neuroglia
4

Similar Publications

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Evolution of long scalp hair in humans.

Br J Dermatol

January 2025

Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.

The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!