Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain.

Mol Cell Neurosci

Institute of Biochemistry, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

Published: January 2001

In a screen for proteins released from synapse-forming spinal cord neurons, we found the proteolytically cleaved N-terminal fragment of a transmembrane protein localized in the postsynaptic membrane of both excitatory and inhibitory synapses. We termed this protein calsyntenin-1, because it binds synaptic Ca2+ with its cytoplasmic domain. By binding Ca2+, calsyntenin-1 may modulate Ca2+-mediated postsynaptic signals. Proteolytic cleavage of calsyntenin-1 in its extracellular moiety generates a transmembrane stump that is internalized and accumulated in the spine apparatus of spine synapses. Therefore, the synaptic Ca2+ modulation by calsyntenin-1 may be subject to regulation by extracellular proteolysis in the synaptic cleft. Thus, calsyntenin-1 may link extracellular proteolysis in the synaptic cleft and postsynaptic Ca2+ signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mcne.2000.0937DOI Listing

Publication Analysis

Top Keywords

postsynaptic membrane
8
synaptic ca2+
8
extracellular proteolysis
8
proteolysis synaptic
8
synaptic cleft
8
calsyntenin-1
6
calsyntenin-1 proteolytically
4
proteolytically processed
4
postsynaptic
4
processed postsynaptic
4

Similar Publications

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!