Chromosomal changes during development and progression of prostate adenocarcinomas.

Br J Cancer

Institute of Radiobiology, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Ingolstäder Landstr. 1, Neuherberg, D-85764, Germany.

Published: January 2001

Chromosomal copy number changes were investigated in 16 prostate carcinomas, 12 prostatic intraepithelial neoplasias (PIN; 4 low-grade and 8 high-grade) adjacent to the invasive tumour areas, and 5 regional lymph node metastases. For this purpose, comparative genomic hybridization (CGH) was performed and a copy number karyotype for each histomorphological entity was created. CGH on microdissected cells from non-neoplastic glands was carried out on 3 different cases to demonstrate the reliability of the overall procedure. None of the non-neoplastic tissue samples revealed chromosome copy number changes. In PIN areas, chromosomal imbalances were detected on chromosomes 7, 8q, Xq (gains), and on 4q, 5q, 8p, 13q and 18q (losses). In the primary tumours, recurrent (at least 25% of cases) gains on chromosomes 12q and 15q, and losses on 2q, 4q, 5q, Xq, 13q and 18q became apparent. Losses on 8p and 6q as well as gains on 8q and of chromosome 7 were also detected at lower frequencies than previously reported. The pooled CGH data from the primary carcinomas revealed a novel region of chromosomal loss on 4q which is also frequently affected in other tumour entities like oesophageal adenocarcinomas and is supposed to harbour a new tumour suppressor gene. Gains on chromosome 9q and of chromosome 16 and loss on chromosome 13q were observed as common aberrations in metastases and primary tumours. These CGH results indicate an accumulation of chromosomal imbalances during the PIN-carcinoma-metastasis sequence and an early origin of tumour-specific aberrations in PIN areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2363712PMC
http://dx.doi.org/10.1054/bjoc.2000.1533DOI Listing

Publication Analysis

Top Keywords

copy number
12
number changes
8
pin areas
8
chromosomal imbalances
8
13q 18q
8
primary tumours
8
gains chromosome
8
chromosomal
5
chromosome
5
chromosomal changes
4

Similar Publications

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification.

Gastric Cancer

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.

Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.

View Article and Find Full Text PDF

Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.

View Article and Find Full Text PDF

Recently, exportin gene family members have been demonstrated to play essential roles in tumor progression. However, research on the clinical significance of exportin gene family members is limited in clear cell renal cell carcinoma (ccRCC). Pan-cancer data, ccRCC multiomics data, and single-cell sequence were included to analyze the differences in DNA methylation modification, single nucleotide variations (SNVs), copy number variations (CNVs), and expression levels of exportin gene family members.

View Article and Find Full Text PDF

A colloidal gold immunochromatographic assay (ICA) based on a dual-antibody sandwich method was developed for the rapid and convenient detection of () antigens in the early stages of infection. Monoclonal antibodies designed as 5B3 targeting the conserved region of 56 kDa outer membrane protein in various strains of were generated through cell fusion and screening techniques and combined with previously prepared polyclonal antibodies as detection antibodies to establish the ICA. Colloidal gold and polyclonal antibody-colloidal gold complexes were synthesized under optimized conditions.

View Article and Find Full Text PDF

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!