Automated segmentation of MR images of brain tumors.

Radiology

Surgical Planning Laboratory, Depts of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.

Published: February 2001

An automated brain tumor segmentation method was developed and validated against manual segmentation with three-dimensional magnetic resonance images in 20 patients with meningiomas and low-grade gliomas. The automated method (operator time, 5-10 minutes) allowed rapid identification of brain and tumor tissue with an accuracy and reproducibility comparable to those of manual segmentation (operator time, 3-5 hours), making automated segmentation practical for low-grade gliomas and meningiomas.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiology.218.2.r01fe44586DOI Listing

Publication Analysis

Top Keywords

automated segmentation
8
brain tumor
8
manual segmentation
8
low-grade gliomas
8
operator time
8
automated
4
segmentation images
4
images brain
4
brain tumors
4
tumors automated
4

Similar Publications

Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.

View Article and Find Full Text PDF

Background: Body composition scores allow for quantifying the volume and physical properties of specific tissues. However, their manual calculation is time-consuming and prone to human error. This study aims to develop and validate CompositIA, an automated, open-source pipeline for quantifying body composition scores from thoraco-abdominal computed tomography (CT) scans.

View Article and Find Full Text PDF

Automatic segmentation of the midfacial bone surface from ultrasound images using deep learning methods.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Center for Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China. Electronic address:

With developments in computer science and technology, great progress has been made in three-dimensional (3D) ultrasound. Recently, ultrasound-based 3D bone modelling has attracted much attention, and its accuracy has been studied for the femur, tibia, and spine. The use of ultrasound allows data for bone surface to be acquired non-invasively and without radiation.

View Article and Find Full Text PDF

A Deep Learning Tool for Minimum Joint Space Width Calculation on Anteroposterior Knee Radiographs.

J Arthroplasty

January 2025

Orthopedic Surgery Artificial Intelligence Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA. Electronic address:

Background: Minimum joint space width (mJSW) is an important continuous quantitative metric of osteoarthritis progression in the knee. The purpose of this study was to develop an automated measurement algorithm for mJSW in the medial and lateral compartments of the knee that can flexibly handle native knees as well as knees after arthroplasty.

Methods: We developed an end-to-end algorithm consisting of a deep learning segmentation model plus a computer vision algorithm to measure mJSW in the medial and lateral compartments of the knee.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!