Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis.

Am J Respir Cell Mol Biol

Pulmonary Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

Published: February 2001

Recent studies have indicated that sepsis is associated with enhanced generation of several free-radical species (nitric oxide [NO], superoxide, hydrogen peroxide) in skeletal muscle. It is also known that this enhanced free-radical generation results in reductions in skeletal muscle force-generating capacity, but the precise mechanism(s) by which free radicals exert this effect in sepsis has not been determined. We postulated that free radicals might react directly with the contractile proteins in this condition, altering contractile protein force-generating capacity. To test this theory, we compared the force generation of single Triton-skinned diaphragmatic fibers (Triton skinning exposes the contractile apparatus, permitting direct assessment of contractile protein function) from the following groups of rats: (1) control animals; (2) endotoxin-treated animal; (3) animals given endotoxin plus polyethylene glycol- superoxide dismutase (PEG-SOD), a superoxide scavenger; (4) animals given endotoxin plus N(omega)-nitro-L-arginine methylester (L-NAME), a NO synthase inhibitor; (5 ) animals given only PEG-SOD or L-NAME; and (6 ) animals given endotoxin plus denatured PEG-SOD. We found that endotoxin administration produced both a reduction in the maximum force-generating capacity (Fmax) (i.e., a decrease in Fmax) of muscle fibers and a reduction in fiber calcium sensitivity (i.e., an increase in the Ca2+ concentration required to produce half-maximal activation [Ca50]). L-NAME and PEG-SOD administration preserved Fmax and Ca50 in endotoxin-treated animals; neither drug affected these parameters in non-endotoxin treated animals. Denatured PEG-SOD failed to inhibit endotoxin-related alterations in contractile protein function. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of skinned fibers from endotoxin-treated animals revealed a selective depletion of several proteins; administration of L-NAME or PEG-SOD to endotoxin-treated animals prevented this protein depletion, paralleling the effect of these two agents to prevent a reduction in contractile protein force-generating capacity. These data indicate that free radicals (superoxide, NO, or daughter species of these radicals) play a central role in altering skeletal muscle contractile protein force-generating capacity in endotoxin-induced sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1165/ajrcmb.24.2.4075DOI Listing

Publication Analysis

Top Keywords

contractile protein
24
force-generating capacity
20
skeletal muscle
12
free radicals
12
protein force-generating
12
animals endotoxin
12
endotoxin-treated animals
12
animals
9
contractile
8
endotoxin-induced sepsis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!