Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia.

Am J Physiol Heart Circ Physiol

Department of Exercise Science, University of Iowa, Iowa City, Iowa 52242, USA.

Published: February 2001

This work tested the hypotheses that splanchnic oxidant generation is important in determining heat tolerance and that inappropriate.NO production may be involved in circulatory dysfunction with heat stroke. We monitored colonic temperature (T(c)), heart rate, mean arterial pressure, and splanchnic blood flow (SBF) in anesthetized rats exposed to 40 degrees C ambient temperature. Heating rate, heating time, and thermal load determined heat tolerance. Portal blood was regularly collected for determination of radical and endotoxin content. Elevating T(c) from 37 to 41.5 degrees C reduced SBF by 40% and stimulated production of the radicals ceruloplasmin, semiquinone, and penta-coordinate iron(II) nitrosyl-heme (heme-.NO). Portal endotoxin concentration rose from 28 to 59 pg/ml (P < 0.05). Compared with heat stress alone, heat plus treatment with the nitric oxide synthase (NOS) antagonist N(omega)-nitro-L-arginine methyl ester (L-NAME) dose dependently depressed heme-.NO production and increased ceruloplasmin and semiquinone levels. L-NAME also significantly reduced lowered SBF, increased portal endotoxin concentration, and reduced heat tolerance (P < 0.05). The NOS II and diamine oxidase antagonist aminoguanidine, the superoxide anion scavenger superoxide dismutase, and the xanthine oxidase antagonist allopurinol slowed the rates of heme-.NO production, decreased ceruloplasmin and semiquinone levels, and preserved SBF. However, only aminoguanidine and allopurinol improved heat tolerance, and only allpourinol eliminated the rise in portal endotoxin content. We conclude that hyperthermia stimulates xanthine oxidase production of reactive oxygen species that activate metals and limit heat tolerance by promoting circulatory and intestinal barrier dysfunction. In addition, intact NOS activity is required for normal stress tolerance, whereas overproduction of.NO may contribute to the nonprogrammed splanchnic dilation that precedes vascular collapse with heat stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.2001.280.2.H509DOI Listing

Publication Analysis

Top Keywords

heat tolerance
20
ceruloplasmin semiquinone
12
portal endotoxin
12
heat
9
circulatory intestinal
8
intestinal barrier
8
barrier dysfunction
8
heat stroke
8
endotoxin content
8
endotoxin concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!