A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alginate formation in Azotobacter vinelandii UWD during stationary phase and the turnover of poly-beta-hydroxybutyrate. | LitMetric

Alginate formation in Azotobacter vinelandii UWD during stationary phase and the turnover of poly-beta-hydroxybutyrate.

Microbiology (Reading)

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91.

Published: February 2001

Azotobacter vinelandii UWD is a mutant of strain UW that is defective in the respiratory oxidation of NADH. This mutation causes an overproduction of polyhydroxyalkanoates (PHAs), as polyester synthesis is used as an alternative electron sink. Since PHAs have potential for use as natural, biodegradable plastics, studies of physiology related to their production are of interest. Alginate production by this strain is limited to < 11 microg (mg cell protein)(-1), which permits high efficiency conversion of carbon source into PHA. However, < or = 400 microg (mg cell protein)(-1) was formed when UWD cells were oxygen-limited and in the stationary phase of growth. Alginate formation was fuelled by PHA turnover, which was coincident with the synthesis of alkyl resorcinols, under conditions of exogenous glucose limitation. However, alginate production was a phenotypic and reversible change. Alginate production was stopped by interruption of algD with Tn5lacZ. LacZ activity in UWD was shown to increase in stationary phase, while LacZ activity in a similarly constructed mutant of strain UW did not. Transcription of algD in strain UWD started from a previously identified RpoD promoter and not from the AlgU (RpoE) promoter. This is because strain UWD has a natural insertion element in algU. Differences between strain UW and UWD may reside in the defective respiratory oxidation of NADH, where the NADH surplus in strain UWD may act as a signal of stationary phase. Indeed, a backcross of UW DNA into UWD generated NADH-oxidase-proficient cells that failed to form alginate in stationary phase. Evidence is also presented to show that the RpoD promoter may be recognized by the stationary phase sigma factor (RpoS), which may mediate alginate production in strain UWD.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-147-2-483DOI Listing

Publication Analysis

Top Keywords

stationary phase
24
strain uwd
20
alginate production
16
uwd
10
alginate formation
8
azotobacter vinelandii
8
vinelandii uwd
8
strain
8
mutant strain
8
defective respiratory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!