Prebiotic digestion and fermentation.

Am J Clin Nutr

Dunn Nutrition Unit, Dunn Clinical Nutrition Centre, Cambridge, United Kingdom.

Published: February 2001

Prebiotics, as currently conceived of, are all carbohydrates of relatively short chain length. To be effective they must reach the cecum. Present evidence concerning the 2 most studied prebiotics, fructooligosaccharides and inulin, is consistent with their resisting digestion by gastric acid and pancreatic enzymes in vivo. However, the wide variety of new candidate prebiotics becoming available for human use requires that a manageable set of in vitro tests be agreed on so that their nondigestibility and fermentability can be established without recourse to human studies in every case. In the large intestine, prebiotics, in addition to their selective effects on bifidobacteria and lactobacilli, influence many aspects of bowel function through fermentation. Short-chain fatty acids are a major product of prebiotic breakdown, but as yet, no characteristic pattern of fermentation acids has been identified. Through stimulation of bacterial growth and fermentation, prebiotics affect bowel habit and are mildly laxative. Perhaps more importantly, some are a potent source of hydrogen in the gut. Mild flatulence is frequently observed by subjects being fed prebiotics; in a significant number of subjects it is severe enough to be unacceptable and to discourage consumption. Prebiotics are like other carbohydrates that reach the cecum, such as nonstarch polysaccharides, sugar alcohols, and resistant starch, in being substrates for fermentation. They are, however, distinctive in their selective effect on the microflora and their propensity to produce flatulence.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/73.2.415sDOI Listing

Publication Analysis

Top Keywords

fermentation prebiotics
8
reach cecum
8
prebiotics
7
fermentation
5
prebiotic digestion
4
digestion fermentation
4
prebiotics currently
4
currently conceived
4
conceived carbohydrates
4
carbohydrates short
4

Similar Publications

Oxidative stress caused by reactive oxygen species (ROS) affects the aging process and increases the likelihood of several diseases. A new frontier in its prevention includes bioactive foods and natural extracts that can be introduced by the diet in combination with specific probiotics. Among the natural compounds that we can introduce by the diet, extract is one of the most utilized since it contains a vast number of bioactive molecules such as phenolic acids, flavonoids, and polysaccharides that have been shown to possess antioxidant, anti-ageing, anti-cancer, and immunomodulatory activity.

View Article and Find Full Text PDF

Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides.

Foods

January 2025

State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.

In order to overcome the bioavailability limitation of polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS.

View Article and Find Full Text PDF

Northern Thai culture offers a rich variety of traditional fermented foods beneficial for gastrointestinal health. In this study, we characterized lactic acid bacteria (LAB) from various indigenous fermented foods as potential probiotic candidates and determined their properties for application in commercial synbiotic formulation. Five isolates demonstrating high tolerance to low pH (2.

View Article and Find Full Text PDF

This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media.

View Article and Find Full Text PDF

Modulation of microbiota composition and markers of gut health after in vitro dynamic colonic fermentation of plant sterol-enriched wholemeal rye bread.

Food Res Int

February 2025

Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain. Electronic address:

A human oral phase followed by a dynamic gastrointestinal digestion and colonic fermentation (simgi®) has been applied to wholemeal rye bread (WRB) and PS-enriched WRB (PS-WRB). The aim of this study was to evaluate the impact of these solid and high-fiber food matrices on the metabolism of PS, modulation of the microbiota and production of short-chain fatty acids (SCFA) and ammonium ion after a simulated chronic intake (5 days). In both breads, campesterol, campestanol, stigmasterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol were identified, of which only β-sitosterol was metabolized to sitostenone after PS-WRB treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!