Formation of nitric oxide from nitroxyl anion: role of quinones and ferricytochrome c.

Br J Pharmacol

Department of Pharmacology, Medical Faculty, Mersin University, Campus Yenisehir, 33160 Mersin, Turkey.

Published: January 2001

AI Article Synopsis

Article Abstract

1. Our previous finding that copper ions oxidize nitroxyl anion released from Angeli's salt to nitric oxide prompted us to examine if copper-containing enzymes shared this property. 2. The copper-containing enzyme, tyrosinase, which catalyses the hydroxylation of monophenols to diphenols and the subsequent oxidation of these to the respective unstable quinone, failed to generate nitric oxide from Angeli's salt by itself, but did so in the presence of tyrosine. 3. L-DOPA, the initial product of the reaction of tyrosinase with tyrosine, was not the active species, since it failed to generate nitric oxide from Angeli's salt. Nevertheless, L-DOPA and two other substrates, namely, catechol and tyramine did produce nitric oxide from Angeli's salt in the presence of tyrosinase, suggesting involvement of the respective unstable quinones. In support, we found that 1,4-benzoquinone produced a powerful nitric oxide signal from Angeli's salt. 4. Coenzyme Q(o), an analogue of ubiquinone, failed to generate nitric oxide from Angeli's salt by itself, but produced a powerful signal in the presence of its mitochondrial complex III cofactor, ferricytochrome c. 5. Experiments conducted on rat aortic rings with the mitochondrial complex III inhibitor, myxothiazol, to determine if this pathway was responsible for the vascular conversion of nitroxyl to nitric oxide were equivocal: relaxation to Angeli's salt was inhibited but so too was that to unrelated relaxants. 6. Thus, certain quinones oxidize nitroxyl to nitric oxide. Further work is required to determine if endogenous quinones contribute to the relaxant actions of nitroxyl donors such as Angeli's salt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572556PMC
http://dx.doi.org/10.1038/sj.bjp.0703812DOI Listing

Publication Analysis

Top Keywords

nitric oxide
36
angeli's salt
32
oxide angeli's
16
failed generate
12
generate nitric
12
oxide
9
nitroxyl anion
8
oxidize nitroxyl
8
angeli's
8
salt
8

Similar Publications

Serum Nitric Oxide, Endothelin-1 Correlates Post-Procedural Major Adverse Cardiovascular Events among Patients with Acute STEMI.

Arq Bras Cardiol

January 2025

Department of Cardiovascular Medicine - Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Zhejiang - China.

Background: ST-segment elevation myocardial infarction (STEMI) is a common and severe form of acute myocardial infarction (AMI).

Objectives: The study aimed to investigate the relationship between serum nitric oxide (NO) and endothelin-1 (ET-1) levels with the severity of STEMI and their predictive value for major adverse cardiovascular events (MACE) within one year after percutaneous coronary intervention (PCI) in STEMI patients.

Methods: The retrospective study was conducted on 269 STEMI patients who underwent PCI.

View Article and Find Full Text PDF

Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.

View Article and Find Full Text PDF

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Background: The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function.

View Article and Find Full Text PDF

Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!