Recent examination of the relationships of the dry necrosis-inducing (necrogenic) erwinias using 16S rDNA sequences demonstrated that these bacteria comprise a polyphyletic group and, therefore, have been subdivided into three distinct genera, Erwinia, Brenneria and Pectobacterium, with the classical 'amylovora' group species now being distributed nearly evenly among the first two. To further assess the molecular evolutionary relationships between current necrogenic Erwinia and Brenneria species, as well as between these genera and the exclusively soft-rotting genus Pectobacterium, the glyceraldehyde-3-phosphate dehydrogenase (gapDH) genes from 57 Erwinia and Brenneria isolates along with Pectobacterium type strains were PCR-amplified, sequenced and subjected to phylogenetic analysis. Pairwise alignments of cloned gapDH genes revealed remarkably high interspecies genetic diversity among necrogenic isolates. Four evolutionary clades of necrogenic species were described that assorted more closely to known soft-rotting species than to each other. Interclade comparisons of gapDH nucleotide sequences revealed as much genetic divergence between these four necrogenic clades as existed between necrogenic and soft-rotting clades. An examination of the phylogenetic utility of the gapDH gene in light of current 16S rDNA clustering of these species revealed varying levels of taxonomic congruence between these genes for the structure of Erwinia, Brenneria and Pectobacterium. These analyses suggest that, while gapDH possesses sufficient genetic variation to fully differentiate Erwinia and Brenneria species, the gene may not accurately reflect interspecies taxonomic relatedness among all three phytopathogenic genera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00207713-50-6-2057 | DOI Listing |
Syst Appl Microbiol
May 2024
Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69621, France. Electronic address:
The Pectobacteriaceae family comprises plant pathogens able to provoke diverse diseases, including plant maceration due to the production of pectinases disrupting the plant cell wall. To better understand their diversity, a survey of pectinolytic bacteria was performed in brackish lakes of the French region La Camargue near the Mediterranean Sea. The genome of six atypical isolates was sequenced; their size is around 4.
View Article and Find Full Text PDFEnviron Entomol
February 2017
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Heteroptera: Pentatomidae), is a rapidly growing pest damaging southern US agriculture. Pentatomid stink bugs are known to vector bacterial, fungal, and viral plant diseases. However, bacteria associated with redbanded stink bugs and their vector potential have not yet been assessed.
View Article and Find Full Text PDFPlant Dis
July 2014
Department of Plant Pathology, Corvinus University of Budapest, Ménesi Road 44, H-1118 Budapest, Hungary.
During August 2012, vertical oozing cankers were sporadically observed on trunks and branches of walnut trees (Juglans regia) in the city of Zánka, near Lake Balaton and other parts of Hungary including Budapest, Győr, and Tatabánya cities. Cankers were observed on trunks and branches where brownish-black exudates staining the bark appeared mainly in the summer. Isolations were performed primarily from exudates but also from infected tissues using King's medium B (KB) (3) and EMB medium (2).
View Article and Find Full Text PDFMol Microbiol
November 2011
Université de Lyon, Université Lyon 1, INSA-Lyon, Microbiologie Adaptation et Pathogénie, CNRS UMR5240, Domaine Scientifique de la Doua, 69622 Villeurbanne, France.
Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
July 2012
BCCM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
Bacterial isolates from oak trees in Spain and Britain, showing symptoms of bark canker and Acute Oak Decline (AOD), respectively, were examined by a polyphasic approach. Both 16S rRNA gene sequencing and multilocus sequence analysis (MLSA), based on partial sequences of gyrB, rpoB, infB and atpD genes, revealed that the isolates were separated into two genetic groups according to their origin. Their closest phylogenetic relative was Brenneria quercina, the causal agent of drippy nut disease of oak, which clustered distant to the other species of the genus Brenneria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!