Niemann-Pick type C (NPC) disease is characterized by an accumulation of cholesterol in most tissues and progressive neurodegeneration with the formation of neurofibrillary tangles. Neurofibrillary tangles are composed of paired helical filaments (PHF), a major component of which is the hyperphosphorylated tau. In this study we used NPC heterozygous and NPC homozygous mouse brains to investigate the molecular mechanism responsible for tauopathy in NPC. Immunoblot analysis using anti-tau antibodies (Tau-1, PHF-1, AT-180, and AT-100) revealed site-specific phosphorylation of tau at Ser-396 and Ser-404 in the brains of NPC homozygous mice. Mitogen-activated protein kinase, a potential serine kinase known to phosphorylate tau, was activated, whereas other serine kinases such as glycogen synthase kinase-3beta and cyclin-dependent kinase 5 were inactive. Morphological examination demonstrated that a number of neurons, the perikarya of which strongly immunostained with PHF-1, exhibited polymorphorous cytoplasmic inclusion bodies and multi-concentric lamellar-like bodies. Importantly, the accumulation of intracellular cholesterol in NPC mouse brains was determined to be a function of age. From these results we conclude that abnormal cholesterol metabolism due to the genetic mutation in NPC1 may be responsible for activation of the mitogen-activated protein kinase-signaling pathway and site-specific phosphorylation of tau in vivo, leading to tauopathy in NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M009733200DOI Listing

Publication Analysis

Top Keywords

site-specific phosphorylation
12
phosphorylation tau
12
mitogen-activated protein
12
activation mitogen-activated
8
protein kinase
8
niemann-pick type
8
neurofibrillary tangles
8
npc homozygous
8
mouse brains
8
tauopathy npc
8

Similar Publications

Signaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites.

Brief Bioinform

November 2024

Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.

Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.

View Article and Find Full Text PDF

Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes.

View Article and Find Full Text PDF

Enhanced Antitumor Immunity of a Globo H-Based Vaccine Enabled by the Combination Adjuvants of 3D-MPL and QS-21.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

Globo H, a specific carbohydrate antigen overexpressed on various human malignancies, has attracted considerable interest as an antigenic target for anticancer vaccine development. Despite several Globo H-based carbohydrate vaccines that have been designed, efficient access to Globo H hexasaccharide antigen and development of powerful adjuvants for enhancing antitumor immunity remain challenging. Herein, we reported a streamlined chemoenzymatic approach to prepare this hexasaccharide antigen, relying on chemical synthesis of Gb5 pentasaccharide by a stereoconvergent [2+3] strategy and subsequent enzymatic α-fucosylation to easily install α1,2-fucose residue.

View Article and Find Full Text PDF

Post-Translational Modifications Control Phase Transitions of Tau.

ACS Cent Sci

November 2024

Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States.

Article Synopsis
  • * Researchers synthesized a Tau segment with various PTMs and observed that these modifications generally hinder Tau's assembly into PHFs, with acetylation showing variable effects, and phosphorylation consistently reducing aggregation.
  • * The findings emphasize that PTMs located outside the rigid core of Tau filaments are crucial for initiating PHF formation, illustrating the complex role of these modifications in influencing Tau aggregation dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!